Shaking Force Balancing of the Orthoglide - INSA Rennes - Institut National des Sciences Appliquées de Rennes Access content directly
Book Sections Year : 2020

Shaking Force Balancing of the Orthoglide


The shaking force balancing is a well-known problem in the design of high-speed robotic systems because the variable dynamic loads cause noises, wear and fatigue of mechanical structures. Different solutions, for full or partial shaking force balancing, via internal mass redistribution or by adding auxiliary links were developed. The paper deals with the shaking force balancing of the Orthoglide. The suggested solution based on the optimal acceleration control of the manipulator’s common center of mass allows a significant reduction of the shaking force. Compared with the balancing method via adding counterweights or auxiliary substructures, the proposed method can avoid some drawbacks: the increase of the total mass, the overall size and the complexity of the mechanism, which become especially challenging for special parallel manipulators. Using the proposed motion control method, the maximal value of the total mass center acceleration is reduced, as a consequence, the shaking force of the manipulator decreases. The efficiency of the suggested method via numerical simulations carried out with ADAMS is demonstrated.
Fichier principal
Vignette du fichier
RAAD_2020_09.pdf (468.45 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-02882988 , version 1 (08-11-2020)



Jing Geng, Vigen Arakelian, Damien Chablat. Shaking Force Balancing of the Orthoglide. In: Zeghloul S., Laribi M., Sandoval Arevalo J. (eds) Advances in Service and Industrial Robotics. RAAD 2020. Mechanisms and Machine Science, vol 84. Springer, pp.227-234, 2020, 2211-0984. ⟨10.1007/978-3-030-48989-2_25⟩. ⟨hal-02882988⟩
106 View
111 Download



Gmail Mastodon Facebook X LinkedIn More