
HAL Id: hal-02157298
https://insa-rennes.hal.science/hal-02157298

Submitted on 16 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhanced Software Implementation of a Chaos-Based
Stream Cipher

Guillaume Gautier, Safwan El Assad, Olivier Déforges, Sylvain Guilley,
Adrien Facon, Wassim Hamidouche

To cite this version:
Guillaume Gautier, Safwan El Assad, Olivier Déforges, Sylvain Guilley, Adrien Facon, et al.. Enhanced
Software Implementation of a Chaos-Based Stream Cipher. SECURWARE 2018, Sep 2018, Venise,
Italy. pp.128-133. �hal-02157298�

https://insa-rennes.hal.science/hal-02157298
https://hal.archives-ouvertes.fr

Enhanced Software Implementation of a Chaos-Based Stream Cipher
Guillaume Gautier∗, Safwan El Assad†, Olivier Deforges∗,
Sylvain Guilley‡, Adrien Facon‡, Wassim Hamidouche∗

∗ Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, F-35000 Rennes, France
Email: guillaume.gautier@insa-rennes.fr, olivier.deforges@insa-rennes.fr, wassim.hamidouche@insa-rennes.fr

†Polytech Nantes, CNRS, IETR - UMR 6164, F-44000 Nantes, France
Email: safwan.elassad@univ-nantes.fr

‡ Secure-IC SAS, F-35510 Cesson-Sévigné, France
Email: sylvain.guilley@secure-ic.com, adrien.facon@secure-ic.com

Abstract—Cipher algorithms have been created a long time
ago to protect sensitive information. With the evolution of
technology, particularly the increase of computational power, the
multiplication of devices, the interconnection of those devices,
ciphers need to be created and/or enhanced to match challenges
brought by this new environment. In general, chaos-based stream
ciphers have three shortcomings: their implementation is not
constant-time, they have weak keys, and are not portable. We
show in this paper how to overcome those three limitations in
the case of our stream cipher. The stream cipher performance
including statistical analysis and computational performance
are carried out and compared to state-of-the-art algorithms:
Advanced Encryption Standard (AES)-CounTeR (CTR), HC-128
and Rabbit.

Keywords—Chaos-based stream ciphers; Constant time; Statis-
tical analysis; Computational performance.

I. INTRODUCTION

The need of encryption methods has nearly always existed
to protect sensitive information. The number of connected
devices is constantly and rapidly increasing. Those devices are
communicating between each other through multiple channels
exchanging information, such as sensor readings or orders
to control other devices. In this context, the protection of
sensitive data exchanged over networks is necessary. For this
purpose, a secure cryptography that can be embedded into
as many devices and architectures is, now more than ever,
required. This means that algorithms are required to have the
lowest complexity, and implementations have to reduce the
energy consumption, the code size and the Random-Access
Memory (RAM) without compromising security.

Stream ciphers are commonly used to encrypt data in
real time applications like, for example, in selective video
encryption [1][2]. It consists in performing an eXclusive OR
(XOR) operation between a plain text and the output of
a deterministic random generator. In the literature, multiple
stream ciphers exist, the eSTREAM project was promoting
the design of efficient and compact stream cipher such as HC-
128 [3] or Rabbit [4], but according to [5], eSTREAM ciphers
are not all secured.

The chaos theory is used in cryptography for its natural
property of deterministic randomness. Indeed, chaos-based
ciphers generally use chaotic maps for their combination of
security and relatively low complexity.

This paper shows the different enhancements, in terms of
both secure and embedded implementation, of the chaos-based
stream cipher designed in [6][7] and implemented in [8][9].

The main contributions of this paper are the following.
• Remove the vulnerabilities to time-attack analysis, con-

sisting in analysing execution time of secret-dependent
operations in order to retrieve the secret key for example,
a constant-time implementation is proposed.

• Propose a fixed-point implementation whereas the orig-
inal stream cipher [8][9] uses a floating-point number
representation [10] to widen the range of architectures
able to embed the stream cipher.

• A new solution is proposed to correct the minor vulner-
ability inherent to the reduction operation.

The rest of this paper is organized as follows. In Section II,
a functional presentation of the stream cipher and the asso-
ciated generator is introduced. Then, Section III presents the
enhancements brought to the previous implementation along
the expected results. The stream cipher performance (statistical
analysis and computational performance) are carried out and
compared to AES-CTR, HC-128 and Rabbit algorithms in
Section IV. Finally, Section V concludes this paper.

II. ORIGINAL CHAOS-BASED STREAM CIPHER

A. The Stream Cipher

The original stream cipher, based on a Pseudo-Chaotic
Number Generator (PCNG), has been implemented in C [8][9].
As illustrated in Figure 1a, in order to obtain a ciphered
text (C), the plain text (P) is encrypted using a XOR operation
between the plain text and the PCNG output (Xg). The PCNG
is initialized with a secret key (K) of length between 200 and
456 bits, depending on the number of internal delays, and a
64-bit-long Initial Vector (IV).

B. Pseudo-Chaotic Number Generator (PCNG)

The PCNG uses a couple of chaotic maps, the skew tent and
the PieceWise Linear Chaotic (PWLC) map, to produce N -bit
samples, with N = 32, at each instant n. The two maps are
encapsulated in two different cells and the output cells (Xs(n)
and Xp(n)) are paired using a XOR operation as illustrated
in Figure 1b.

Figure 1c shows the block diagram of a cell where X(n)
can be Xs(n) for Skew Tent map, or Xp(n) for PWLC map,

P

Xg

Pseudo
Chaotic
Number

Generator

K

IV

Encryption

C

(a) Stream cipher block
diagram

Cell
SKEW TENT

Cell
PWLC

Xg(n)

(b) Association of the two PCNG
cells

MAP

Z-1

Z-1

Z-1

+

+

x

x

x
X(n-3)

X(n-2)

X(n-1)

{0..31}

{0..31}

{0..31}

K2

K1

K3

X(n)

P

LFSR

(c) Generic block diagram of a cell

Figure 1. Block diagram of the chaos-based stream cipher

P can be Ps or Pp and K1, K2, K3 can be K1s, K2s, K3s
or K1p, K2p, K3p, respectively.

Each cell in Figure 1c is composed of its own chaotic map.
One cell is using the Skew Tent map defined by (1) and the
other is using the PWLC map defined by (2).

Xs(n) = STmap(Xs(n− 1), Ps) =

⌊
2N × Xs

Ps

⌋
if 0 < Xs < Ps⌊

2N × 2N−Xs

2N−Ps

⌋
if Ps < Xs < 2N

2N − 1 otherwise

(1)

Xp(n) = PLWCmap(Xp(n− 1), Pp) =

⌊
2N × Xp

Pp

⌋
if 0 < Xp < Pp⌊

2N × Xp−P
2N−1−Pp

⌋
if Pp < Xp < 2N−1

⌊
2N × 2N−Pp−Xp

2N−1−Pp

⌋
if 2N−1 < Xp < 2N − Pp⌊

2N × 2N−Xp

Pp

⌋
if 2N − Pp < Xp < 2N

2N − 1 otherwise

(2)

The map outputs are periodically perturbed using a Linear
Feedback Shift Register (LFSR) [9] and are encapsulated
inside an Infinite Impulse Response (IIR) filter with a variable
order (1 to 3) (see Figure 1c). Increasing the filters’ order will
improve the statistical performance significantly.

In the cell Skew Tent, the parameter Ps ∈]0, 232[and the
coefficients of the IIR filter K1s, K2s, K3s ∈]0, 232[are
part of the secret key, for PWLC, the parameter Pp ∈]0, 231[
and K1p, K2p, K3p ∈]0, 232[, respectively.

C. Secret key and IV set-up

The first iteration is computed according to the following
equations:

Xins =

(
MSB(IV) +

nbDelay∑
i=1

Xis ×Kis

)
mod 2N

Xs(0) = STmap [Xins, Ps]

(3)

Xinp =

(
LSB(IV) +

nbDelay∑
i=1

Xip ×Kip

)
mod 2N

Xp(0) = PLWCmap [Xinp, Pp]

(4)

where the values Xis and Xip are parameters of the key.
As shown in Equations (3) and (4), the 32 Most Significant

Bits (MSB) of the IV are fed to the Skew Tent map and
respectively the 32 Less Significant Bits (LSB) to the PWLC
map.

III. ENHANCED SOFTWARE IMPLEMENTATION

A. Constant-Time Implementation

The implementation introduced in [8][9] showed secret-
dependent timings. Indeed, the implementation profiling shows
that the maps’ computation is not constant since a branching is
used to compare elements of the secret key and the complexity
of each branch is different, resulting in different execution
times. Branching is done by comparing Xs to Ps or Xp to Pp,
as shown in Figure 2 for PWLC map given as an example.

Require: Xp ∈]0; 232[and Pp ∈]0; 231[
if 0 < Xp < Pp then
Xp ← Xp × ratio3

else if (Pp < Xp < M2) then
Xp ← (Xp − Pp)× ratio4

else if M2 < Xp < (M1 − Pp) then
Xp ← (M1 − Pp −Xp)× ratio4

else if (M1 − Pp) < Xp < M1 then
Xp ← (M1 −Xp)× ratio3

else
Xp ←M1 − 1

end if
return Xp

where M1 = 232, M2 = 231 and ratios are defined in (5).
Figure 2. Calculate Xp(n) = PLWCmap(Xp(n− 1), Pp)

Having secret-dependent timings is a vulnerability that an
attacker can exploit to retrieve elements of the secret key.
To overcome this problem, the proposed solution is detailed,
as pseudo-code, in Figure 3. In order to achieve the same
computational time and complexity for each sample, the maps
compute, first, all the flags B1 to B5 used to determine which
case should be selected. Then, the maps compute all the cases
and masks them to select the correct output value. Similar
modifications are applied to STmap().

Require: Xp ∈]0; 232[and Pp ∈ [0; 231[
B1 ← 0 < Xp < Pp

B2 ← Pp < Xp < M2

B3 ←M2 < Xp < (M1 − Pp)
B4 ← (M1− Pp) < Xp < M1

B5 ← (B1 +B2 +B3 +B4) = 0
X1 ← (Xp × ratio3)&mask(B1);
X2 ← ((Xp − Pp)× ratio4))&mask(B2)
X3 ← ((M1 − Pp −Xp)× ratio4))&mask(B3)
X4 ← ((M1 −Xp)× ratio3))&mask(B4)
return (X1 +X2 +X3 +X4 + ((M1 − 1)&mask(B5))

where M1 = 232, M2 = 231, ratios are defined in (5) and
mask(BX) returns 0xFFFFFFFF if BX = 1, otherwise 0.

Figure 3. Calculate Xp(n) = PLWCmap(Xp(n− 1), Pp)

B. Fixed-Point Implementation

In the C implementation of [8][9], the maps were com-
puted using double-precision floating-point number represen-
tation [10], which cannot always be computed on embedded
systems. The other drawback is the computational power
required to perform such operation.

The software pre-calculates ratios for each maps. These
ratios depend on the parameters Ps and Pp contained in the
secret key and are defined as follows:

ratio1 = 232

Ps
; ratio2 = 232

232−Ps
;

ratio3 = 232

Pp
; ratio4 = 232

231−Pp

(5)

To match the double-precision floating-point standard [10]
previously used, the 12.52 format is taken as the fixed point
representation.

Due to the precision required to perform this computation of
the maps, using the fixed-point ratio, at least 96-bit number is
required. The computation consists in adding/subtracting 32-
bit input, multiply it by the 64-bit ratio and then shift the result
by 52 to obtain the result on 32 bits. The targeted platform
(i.e., x86-64 Central Processing Unit (CPU)) computation is
done on 128-bit words. The implementation of the fixed point
ratios is described in Figures 4 and 5. Figure 4 shows how the
pre-calculation of the ratio is performed and Figure 5 presents
the implementation of the PWLC map, the same thinking is
applied to the Skew Tent map.

ratio1← (M1 << 52)/Ps

ratio2← (M1 << 52)/(M1 − Ps)
ratio3← (M1 << 52)/Pp

ratio4← (M1 << 52)/(M2 − Pp)

where M1 = 232 and M2 = 231.
Figure 4. Computation of the ration using a fixed-point representation 12.52

Require: Xp ∈]0; 232[and Pp ∈ [0; 231[
B1 ← 0 < Xp < Pp

B2 ← Pp < Xp < M2

B3 ←M2 < Xp < (M1 − Pp)
B4 ← (M1− Pp) < Xp < M1

B5 ← (B1 +B2 +B3 +B4) = 0
X1 ← ((Xp × ratio3) >> 52)&mask(B1);
X2 ← (((Xp − Pp)× ratio4) >> 52)&mask(B2)
X3 ← (((M1 − Pp −Xp)× ratio4) >> 52)&mask(B3)
X4 ← (((M1 −Xp)× ratio3) >> 52)&mask(B4)
return (X1 +X2 +X3 +X4 + ((M1 − 1)&mask(B5))

where M1 = 232, M2 = 231, ratios are defined in (5) and
mask(BX) returns 0xFFFFFFFF if BX = 1, otherwise 0.

Figure 5. Calculate Xp(n) = PLWCmap(Xp(n− 1), Pp) using a
fixed-point representation 12.52

C. Uniqueness of reduced products

Uniqueness of reduced products inside the IIR filter is
primary. Indeed, the filter initialization being based on the
secret key, filter output needs to be different for each keys,
otherwise the generated sequence is the same. Two solutions
are possible, the key space can be reduced to remove the
weak keys or, as proposed below, to shift the result before
the reduction to N bits, where N is the internal resolution of
the chaotic maps, here N = 32.

Let q = P (C = C ′) be the probability of having C = C ′

with C = A × B, C ′ = A′ × B′ and A, A′, B, B′ being
four distinct unsigned integers defined on N bits. Equation (6)
presents the probability of having q in different cases. In our
case, the generator is included in the second case, i.e., q 6= 0.
The proposed solution aims to minimize the probability q.

 q = 0 if C or C ′ is defined on 2N-bits
q 6= 0 if C and C ′ are defined on M, M ′ bits,

with M, M ′ < 2N
(6)

Let ε(j) be equal to 1 << j with {j ∈ IN | j < N} and
let i be an integer in [0;N −1] where i number of right shifts
executed before the reduction to N bits. In the worst case, i.e.,
A′ = A, B′ = B ⊕ ε(j) or A′ = A ⊕ ε(j), B′ = B, the
probability q is equal to:

qN (i) = P ((A×B) >> i = (A× (B ⊕ ε(N − 1))) >> i)
+ P ((A×B) >> i = (A× (B ⊕ ε(0))) >> i)

= 2−(i+1) + 2−(N−i)

Figure 6 shows the value of qN depending on the value i for
N = 32. Minimum of q32 is obtained for i = 15 and i = 16.
In the rest of the paper, we consider the value i = 16. The

new generic block diagram of a cell using shifting is presented
in Figure 7.

Figure 6. Probability qN (i) of having A×B = A′ ×B′ being four distinct
unsigned integers defined on N bits, for N = 32

MAP

Z-1

Z-1

Z-1

+

+

x

x

x
X(n-3)

X(n-2)

X(n-1)

{16..47}

{16..47}

{16..47}

K2

K1

K3

X(n)

P
LFSR

Figure 7. New generic block diagram of a cell using shifts

IV. RESULTS AND DISCUSSIONS

In this section, multiple versions of the cipher are imple-
mented and tested.
• V0: this version corresponds to the initial version pre-

sented in [8][9].
• Shifting: this version is V0 that includes the enhancement

presented in Section III-C.
• Fixed-Point: this version is V0 that includes the enhance-

ment presented in Section III-B.
• Shifting + Fixed-Point: this version is the combination of

the two previous versions.
• Constant time (CT): this version is the Shifting + Fixed-

Point version with constant-time implementation pre-
sented in Section III-A.

A. Statistical Tests

To ensure the robustness of the enhanced implementations
against statistical attacks, we perform the following statistical
tests. The statistical tests are only run on the constant-time
version. Similar results are obtained for all considered ver-
sions.

1) NIST Statistical Tests Suite (STS) SP 800-22: National
Institute of Standards and Technology (NIST) STS [11] the
popular test suite for investigating the randomness of binary
data is applied. The suite contains 188 tests and sub-tests that
assess the randomness of arbitrarily long binary sequences.
These tests focus on a variety of different types of non-
randomness that could exist in a sequence.

To perform the different tests, 100 sequences of 31250 32-
bit samples (i.e., 1 million bits per sequence) are generated
using 100 different secret keys. All 188 tests and sub-tests of
the suite are run. For each test, a set of 100 Pvalue is produced
and a sequence passes a test whenever the Pvalue ≥ α = 0.01,
where α is the level of significance of the test. A value of α
= 0.01 means that 1% of the 100 sequences are expected to
fail. The proportion of sequences passing a test is equal to the
number of Pvalue ≥ α divided by 100.

Table I presents the NIST STS’s results of the constant-
time version. The Pvalues of all the tests are strictly over 0.01,
meaning that the cipher passed all the tests. Passing this test is
necessary, but not sufficient to affirm that generated sequences
are random.

TABLE I. NIST STS RESULTS OF THE 3-DELAY CONSTANT-TIME
STREAM CIPHER

Tests P Value Proportion of
passed keys(%)

Frequency 0.51412 100.00
LinearComplexity 0.51412 99.00
LongestRun 0.16261 100.00
OverlappingTemplate 0.92408 98.00
RandomExcursions 0.21822 99.58
Rank 0.94631 100.00
BlockFrequency 0.00463 99.00
NonOverlappingTemplate 0.51879 98.96
ApproximateEntropy 0.22482 99.00
CumulativeSums 0.89412 100.00
Serial 0.21070 99.50
Universal 0.19169 99.00
Runs 0.07572 98.00
FFT 0.17187 98.00
RandomExcursionsVariant 0.40488 98.40

2) Correlation - Hamming Distance (HD): These tests
show the non-similarity of two generated streams from two
different keys.

The correlation coefficient is computed using the binary
representation of the sequences where 1 → 1 and 0 → −1.
The expected value of the correlation coefficient ρij , for two
completely random sequences, should be equal to 0.

Figure 8a shows the obtained correlation coefficients be-
tween two-by-two different sequences. As we can see, all
correlation coefficients are centred around 0 and maximum and
minimum values are bounded by 3, 94×10−3, result expected
for non-correlated sequences.

The average HD is defined in (7), where Sx is the generated
sequence of size L, x is the index of a key inside an array
of 100 random keys. The expected value, for two completely
random sequences, should be equal to 1

2 .

HDij =
{

1
L ×

∑L
k=1 Si(k)⊕ Sj(k) if i 6= j (7)

(a) (b)

Figure 8. Frequency distribution of the correlation coefficients (a) and
hamming distances (b) of the 3-delay stream cipher

Figure 8b shows HDs centred around 1
2 , and maximum

deviation is bound by 1, 97 × 10−3, meaning there is equal
chance to generate a 0 or 1.

3) Histogram distribution: The aim of this test is to deter-
mine if the histogram distribution is uniform. To assert that,
the χ2 test is used. If a generated sequence verifies (8), the
key associated passes the χ2 test.

C∑
i=0

(Vobserved(i)− Vexpected)2

Vexpected
< Vcritical (8)

This test is run on our algorithms, and some reference
algorithms. The test conditions are the following.
• The test is run independently over 1000 randomly gener-

ated keys, and IVs.
• Samples are unsigned 32-bit integers.
• 108 samples are generated per sequence.
• C = 1000 classes are used.
• Vexpected = 108

C = 105

• Vcritical is computed using the inverse of the chi-square
cumulative distribution function as defined in [12][13].
For this paper, Vcritical = 1073.6.

Table II shows the percentage of keys passing the χ2 test
with a set of 1000 random keys and different algorithms.

The performance of literature algorithms is close to 95%.
The initial version is only presenting 88,1% passing keys, but
94.6% keys for the enhanced version pass the test and is close
to standard algorithms.

TABLE II. HISTOGRAM PERFORMANCE

Algorithm Key passing χ2 test
V0 - 3 delays 88.1%
Constant Time - 3 delays 94.6%
AES 94.9%
HC-128 95.4%
Rabbit 95.5%

B. constant time measurement

To check if the algorithmic meets with the constant
time requirement, the Kalray Multi-Purpose Processing Array
(MPPA®) manycore architecture [14] and a x86 platform are
used.

a) On Kalray MPPA® processor: the MPPA® archi-
tecture is designed to achieve high energy efficiency, and
deterministic response times for compute-intensive embedded
applications.

The MPPA® processor , code-named Bostan, integrates 256
Very Long Instruction Word (VLIW) application cores and
32 VLIW management cores (288 cores in total) which can
operate from 400 MHz to 600 MHz on a single chip and
delivers more than 691.2 Giga FLOPS single-precision for
a typical power consumption of 12 W. The 288 cores of
the MPPA® processor are grouped in 16 Compute Clusters
(CC) and implement two Input/Output Subsystems (IO) to
communicate with the external world through high-speed
interfaces via the PCIe Gen3 and Ethernet 10 Gbits/s.

MPPA® platforms integrate a register that counts the num-
ber of CPU cycles elapsed since the start of the machine.
Indeed, it allows to measure a precise complexity of any
algorithm ran on this architecture. To measure this complexity,
a simple difference of two register readings, one before starting
the encryption and one after, is performed.

The number of cycles measured is normalized to have the
Number of Cycles per Byte (NCpB) (Equation (9)).

NCpB =
C

M ×K
(9)

where C is the number of cycles elapsed since the start of the
encryption, K is the number of keys used and M is the size,
in bytes, of the message.

b) On INTEL® x86 processor: similar measurement
method exists for INTEL® x86 processor, using Time Stamp
Counter (TSC) register [15], but is not as precise. The reading
of the TSC register returns the number of ticks elapsed since
the start of the machine. The Number of Ticks per Byte
(NTpB) is the unit used to compare the two implementations
and is defined in (10).

NTpB =
T

M ×K
(10)

where T is the number of ticks elapsed since the start of the
encryption, measured using TSC register, K is the number of
keys used and M is the size, in bytes, of the message.

c) Results and discussions: to check the time stability of
the constant-time version, 100 encryptions of a same 125000-
byte-long message using 100 random keys are started on two
different architectures, MPPA® processor (Figure 9a) and on
x86 processor (Figure 9b).

As illustrated by Figures 9a and 9b, the number of cy-
cles/ticks necessary to encrypt a byte in the initial version
clearly depends on the key used, no matter which architecture
is used. Oppositely, in the constant-time implementation, the
NCpB/NTpB is constant, consequently removes the vulnera-
bilities to timing attacks.

C. Time performances

Time measurements are done on an Intel Core i7-6700 CPU
@3.40GHz. The test environment is set as follows:

(a) on MPPA® Processor (b) on x86 Processor

Figure 9. NCpB/NTpB = f(Key[i]) of the initial version(V0) and the
constant time(CT) version

• CPU frequencies are fixed at 3.00 GHz.
• Hyper-Threading is disabled.
• Pre-fetching is disabled.
• Process is assigned to a core using taskset command.
The function gettimeofday() is used to measure the time

elapsed between the beginning and the end of the encryption.
The message to encrypt is 125000 bytes long.

The metric used in this paper is defined as follows.

NCpB =
F × t
M ×K

(11)

where t is the time measured, K is the number of keys used,
M is the size, in bytes, of the message and F is the frequency
of the CPU. In this paper:
• F = 3.00 GHz.
• M = 125000 Bytes.
• K = 100 Keys.
Table III presents timing performance for different im-

plementations of our cipher and some standard encryption
methods. As shown in Table III, the constant-time version is
a bit slower than other versions, but close to AES-CTR. HC-
128 and Rabbit present better performance, however, these
algorithms manifest some weaknesses against some attacks
such as injection and side-channel attacks mentioned in [5].

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed different enhancements for
the original stream cipher implementation. The problem gener-
ated by product reductions is resolved by the patch presented
in Section III-C. To secure the cipher against time attacks,
one type of side-channel attack, we realized a constant-time
implementation including all achieved enhancements.

The next step of this work would be to perform algebraic,
side-channel and injection attacks for the initial and the
constant-time versions to demonstrate the robustness of the
cipher and its implementations. Then, a measurement of the
energy consumption, the code size and the RAM needed for
the cipher execution should be done to determine if the cipher
can be categorized as lightweight.

Also, the initial and the constant-time versions will be
implemented on embedded FPGA platform.

TABLE III. TIMING OF THE DIFFERENT CIPHER VERSIONS
COMPARED TO STANDARD CIPHERS

Cipher
NCpBversion delay

V0
1 20.86
2 22.11
3 22.59

Shifting
1 20.82
2 22.54
3 23.43

fixed point
1 21.21
2 22.24
3 22.72

shifting + fixed-point
1 21.68
2 22.79
3 23.65

Constant-Time
1 24.46
2 26.04
3 27.06

HC-128 2.35
Rabbit 5.82

AES CTR 24.38

REFERENCES

[1] S. Lian, J. Sun, J. Wang, and Z. Wang, “A chaotic stream cipher and
the usage in video protection,” Chaos, Solitons and Fractals, vol. 34,
no. 3, pp. 851 – 859, 2007.

[2] W. Hamidouche, M. Farajallah, N. Sidaty, S. E. Assad, and O. Deforges,
“Real-time selective video encryption based on the chaos system in
scalable hevc extension,” Signal Processing: Image Communication,
vol. 58, pp. 73 – 86, 2017.

[3] H. Wu, “New stream cipher designs,” M. Robshaw and O. Billet, Eds.
Berlin, Heidelberg: Springer-Verlag, 2008, ch. The Stream Cipher HC-
128, pp. 39–47.

[4] M. Boesgaard, M. Vesterager, and E. Zenner, The Rabbit Stream Cipher.
Springer Berlin Heidelberg, 2008, pp. 69–83.

[5] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and Y. Papaefstathiou, “A
survey of lightweight stream ciphers for embedded systems,” Security
and Communication Networks, vol. 9, no. 10, pp. 1226–1246, dec 2015.

[6] S. El Assad, H. Noura, and I. Taralova, “Design and analyses of efficient
chaotic generators for crypto-systems,” vol. 0, pp. 3–12, 10 2008.

[7] S. El Assad and H. Noura, “Generator of chaotic sequences and
corresponding generating system,” Patent WO2 011 121 218, Oct.,
2011, extension internationale Brevets France n° FR20100059361
et FR20100052288. WO2011121218 (A1) 6/10/2011 CN103124955
(A) 29/05/2013 JP2013524271 (A) 17/06/2013 US2013170641 (A1)
3/07/2013.

[8] A. Arlicot, “Sequences Generator Based on Chaotic Maps,” Université
de Nantes, Tech. Rep., February 2014.

[9] M. A. Taha, S. E. Assad, A. Queudet, and O. Deforges, “Design and
efficient implementation of a chaos-based stream cipher,” International
Journal of Internet Technology and Secured Transactions, vol. 7, no. 2,
p. 89, 2017.

[10] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp.
1–70, Aug 2008.

[11] L. E. Bassham et al., “A statistical test suite for random and pseu-
dorandom number generators for cryptographic applications,” National
Institute of Standards and Technology(NIST), Tech. Rep., 2010.

[12] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions:
with formulas, graphs, and mathematical tables. Government Printing
Office, 1964, vol. 55.

[13] E. Kreyszig, ”Introductory Mathematical Statistics”. John Wiley, 1970.
[14] B. D. de Dinechin, “Kalray MPPA®: Massively parallel processor

array: Revisiting DSP acceleration with the Kalray MPPA Manycore
processor,” in Hot Chips 27 Symposium (HCS), 2015 IEEE. IEEE,
2015, pp. 1–27.

[15] Intel Corporation, “Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual Volume 2B: Instruction Set Reference, M-Z,” Tech. Rep.,
2016.

