
HAL Id: hal-01677745
https://inria.hal.science/hal-01677745

Submitted on 11 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward constructive Slepian-Wolf coding schemes
Christine Guillemot, Aline Roumy

To cite this version:
Christine Guillemot, Aline Roumy. Toward constructive Slepian-Wolf coding schemes. Pier Luigi
Dragotti ; Michael Gastpar. Distributed Source Coding: Theory, Algorithms, and Applications., El-
sevier, 2009, 978-0-12-374485-2. �hal-01677745�

https://inria.hal.science/hal-01677745
https://hal.archives-ouvertes.fr

Toward constructive Slepian-Wolf coding

schemes

C. Guillemot, A. Roumy

2009

1 Introduction

This chapter deals with practical solutions for the Slepian Wolf (SW) coding problem,
which refers to the problem of lossless compression of correlated sources with coders which
do not communicate. Here, we will consider the case of two binary correlated sources
X and Y , characterized by their joint distribution. If the two coders communicate, it
is well known from Shannon’s theory that the minimum lossless rate for X and Y is
given by the joint entropy H(X, Y). Slepian and Wolf established in 1973 [30] that this
lossless compression rate bound can be approached with a vanishing error probability
for infinitely long sequences, even if the two sources are coded separately, provided that
they are decoded jointly and that their correlation is known to both the encoder and the
decoder. Hence, the challenge is to construct a set of encoders which do not communicate
and a joint decoder which can achieve the theoretical limit.

This chapter gives an overview of constructive solutions both for the asymmetric and
the non asymmetric SW coding problems. Asymmetric SW coding refers to the case
where one source, for example Y , is transmitted at its entropy rate and used as side
information to decode the second source X. Non asymmetric SW coding refers to the
case where both sources are compressed at a rate lower than their respective entropy rates.
Sections 2 and 3 recall the principles and then describe practical schemes for asymmetric
and symmetric coding respectively. Practical solutions for which the compression rate is
a priori fixed according to the correlation between the two sources are first described. In
this case, the correlation between the two sources needs to be known - or estimated - at
the transmitter. Rate-adaptive schemes in which the SW code is incremental are then
presented. This chapter ends with Section 4 covering various advanced SW coding topics
such as the design of schemes based on source codes and the generalization to the case of
non-binary sources, and to the case of M sources.

1

2 Asymmetric SW coding

The SW region for two discrete sources is an unbounded polygon with two corner points
(see points A and B in Figure 1 (b)). At these points, one source (say Y for point
A) is compressed at its entropy rate and can therefore be reconstructed at the decoder
independently of the information received from the other source X. The source Y is called
the side information (SI) (available at the decoder only). X is compressed at a smaller
rate than its entropy. More precisely, X is compressed at the conditional entropy H(X|Y)
and can therefore only be reconstructed if Y is available at the decoder. The sources X
and Y play different roles in this scheme, and therefore the scheme is usually referred to
as asymmetric SW coding.

Encoder

Encoder

Decoder

X

Y RY

RX

(X̂, Ŷ)

(a)

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

H(X) H(X, Y) RX

H(Y |X)

H(Y)

H(X, Y)

RY

B

A

H(X, Y)

2
C

H(X, Y)

2

H(X|Y)

(b)

Figure 1: Distributed source coding of statistically dependent i.i.d. discrete random
sequences X and Y . Set-up (left); achievable rate region (right).

2.1 Principle of asymmetric SW coding

2.1.1 The syndrome approach

Because of the random code generation in the SW theorem, the SW proof is non-constructive.
However, some details in the proof do give insights on how to construct SW bound achiev-
ing codes. More precisely, the proof relies on binning – that is a partition of the space
of the source sequences into subsets (or bins) such that the vectors in the bins are as far
apart (or as much “jointly non-typical”) as possible (see Figure 2). In 1974 [40], Wyner
suggested to construct the bins as cosets of a binary linear code and showed the optimality
of this construction. More precisely, if the linear block code achieves the capacity of the
binary symmetric channel (BSC) that models the correlation between the two sources,
then this capacity achieving channel code can be turned into a SW achieving source code.

2

jointly typical with y

Bin 1

y

Bin 2

Bin 3

Bin 4

For a given y, set of x

Figure 2: The partition of the sequences x into four subsets (called bins) such that the
sequences in each bin are as far apart as possible. The set of sequences x jointly typical
with a given y are as “different” as possible: here they are elements of different bins.

In order to present Wyner’s algebraic binning scheme, we first review some notations
on binary linear codes. A binary (n, k) code C is defined by an (n − k) × n parity-check
matrix H, and contains all the n-length vectors1 x s. t. xHT = 0:

C =
{

x : xHT = 0
}

.

Notice that the code C is equivalently defined by a k × n generator matrix G such that
C = {x : x = uG}, where u is a k-bit vector.

If H has full row rank, then the rate of the channel code is k/n. Moreover, for a good
code, all the vectors of the code (called words or codewords) have maximum Hamming
distance. The code partitions the space containing 2n sequences into 2n−k cosets of 2k

words with maximum Hamming distance. Each coset is indexed by an (n − k)-length
syndrome, defined as s = xHT . In other words, all sequences in a coset share the same
syndrome: Cs =

{

x : xHT = s
}

. Moreover, as a consequence of the linearity of the code,
a coset results from the translation of the code by any representative of the coset:

∀v ∈ Cs,Cs = C ⊕ v. (1)

A geometric approach to binary coding visualizes binary sequences of length n as vertices
of an n-dimensional cube. In Figure 3, the code C (the set of codewords or the set of
vectors of syndrome 0 that is represented with •) is a subspace of {0, 1}3, whereas the
coset with syndrome 1, denoted C1 and represented with ◦, is an affine subspace parallel
to C. Notice that properties of a subspace and the linearity property (1) are satisfied (to
verify this, all operations have to be performed over the finite field of order 2).

1All vectors are line vectors, and T denotes transposition. Moreover, ⊕ denotes the addition over the

finite field of order 2 and + the addition over the real field.

3

0010 = 000

110

100 101

111

011010

C = {•} C1 = {◦}

101

110

Figure 3: Construction of a binning scheme with a linear block code in {0, 1}3. The cube
and the basis vector in {0, 1}3 (left); a code defined by the parity check matrix H = (111)
or equivalently the generator matrix G =

(

110
101

)

(right).

If a codeword x is sent over a BSC with cross-over probability p and error sequence z,
the received sequence is y = x + z. Maximum likelihood (ML) decoding over the BSC,
searches for the closest codeword to y with respect to the Hamming distance dH(., .):

x̂ = arg min
x:x∈C

dH(x,y).

This can be implemented with syndrome decoding. This decoding relies on a function
f : {0, 1}n−k → {0, 1}n, that computes for each syndrome a representative called the coset
leader that has minimum Hamming weight. Thus, a syndrome decoder first computes the
syndrome of the received sequence: s = yHT , then the coset leader f(s). This coset
leader is the ML estimate of the error pattern z. Finally, the ML estimate of x is given
by x̂ = y ⊕ f(yHT).

In order to use such a code for the asymmetric SW problem, [40] suggests to construct
bins as cosets of a capacity-achieving parity-check code. Let x and y be two correlated
binary sequences of length n. These sequences are the realizations of the sources X and
Y . The encoder computes and transmits the syndrome of x: s = xHT . The sequence x

of n input bits is thus mapped into its corresponding (n− k) syndrome bits, leading to a
compression ratio of n : (n − k). The decoder, given the correlation between the sources
X and Y and the received coset index s, searches for the sequence in the coset that is
closest to y. In other words, ML decoding is performed in order to retrieve the original
sequence x:

x̂ = arg min
x:x∈Cs

dH(x,y). (2)

Note that the maximization is performed in a set of vectors with syndrome that may not
be 0. Therefore, the classical ML channel decoder has to be adapted in order to be able to

4

enumerate all vectors in a given coset Cs. This adaptation is straightforward if syndrome
decoding is performed. In this case, the decoder can first retrieve the error pattern (since
for each syndrome, the corresponding coset leader is stored) and add it to the SI y.

Syndrome decoding is used here as a mental representation rather than an efficient
decoding algorithm, since it has complexity O(n2n−k). There exists codes with linear
decoding complexity and we will detail these constructions in Section 2.2. In this section,
we have presented a structured binning scheme for the lossless source coding problem
with SI at the decoder. However, the principle is quite general and can be applied to a
large variety of problems as shown in [41].

x

DecoderEncoder

y

s
x̂H arg min

x:x∈Cs

dH(x,y)

(a)

xp
x

DecoderEncoder

y

x̂G arg min
(x xp):(x xp)∈C

′
dH((x xp), (y xp))

x

(b)

Figure 4: Asymmetric SW coding. The syndrome approach (left); the parity approach
(right).

2.1.2 The parity approach

The above detailed syndrome approach is optimal [40], however it may be difficult to
construct rate-adaptive codes by puncturing the syndrome. Therefore, another approach
called parity approach has been proposed [9]2, [1].

Let C
′ be an (n, 2n − k) systematic binary linear code, defined by its (2n − k) × n

generator matrix G = (I P):

C
′ = {xG = (x xp) : x ∈ {0, 1}n}.

The compression of the source X is achieved by transmitting only the parity bits xp of
the source sequence x (see Figure 4). The systematic bits x are not transmitted. This
leads to a compression ratio n : (n − k). Here again, the correlation between the source
X and the SI Y is modeled as a “virtual” channel, where the pair (y xp) is regarded as a
noisy version of (x xp). The channel is therefore a parallel combination of a BSC and a
perfect channel. The decoder corrects the “virtual” channel noise, and thus estimates x

given the parity bits xp and the SI y regarded as a noisy version of the original sequence
x. Therefore, the usual ML decoder must be adapted to take into account that some bits
of the received sequence (xp) are perfectly known. We will detail this in Section 2.2.

Interestingly, both approaches (syndrome or parity) are equivalent if the generator
matrix (in the parity approach) is the concatenation of the identity matrix and the parity

2Note that this paper introduces the principle of the parity approach in the general case of non-

asymmetric coding.

5

check matrix used in the syndrome approach: G = (I H). However, the two codes C and
C
′ (defined by H and G respectively) are not the same. They are not even defined in the

same space (C is a subspace of {0, 1}n, whereas C
′ is a subspace of {0, 1}2n−k). Figure 4

compares the implementation of the syndrome and parity approaches.

2.2 Practical code design based on channel codes

2.2.1 The syndrome approach.

Practical solutions based on the syndrome approach first appeared in a scheme called
discus [21]. For block codes [21], syndrome decoding is performed. For convolutional
codes, the authors in [21] propose to apply the Viterbi decoding on a modified trellis. In
order to solve the problem (2), the decoder is modified such that it can enumerate all the
codewords in a given coset. The method uses the linearity property (1). For systematic
convolutional codes, a representative of the coset is the concatenation of the k-length
zero vector and the n − k-length syndrome s. This representative is then added to all
the codewords labeling the edges of the trellis (see Figure 5). Note that the states of
the trellis depend on the information bits, and thus on the systematic bits, only. Thus,
there exists one trellis section per syndrome value. The decoder, knowing the syndrome
s, searches for the sequence with that particular syndrome that is closest to y. First it
builds the complete trellis. Each section of the trellis is determined by the syndrome.
Once the whole trellis is built, the Viterbi algorithm chooses the closest sequence to the
received y.

x (D)
1

(D)
1

σ

x (D)
2

(D)
2

σ
DD

(a)

x
1
x

2σ
1
σ

2

00

01

10

11

00

00

10

10

01

01

11

11

(b) s = 0

⊕(0 s)
−→

00
σ
1

σ 2
x

1
x

11
00

00

11

01

10

10

01

11

10

01

2

(c) s = 1

Figure 5: Block diagram (a) and trellises (b,c) for the systematic convolutional code
H = [15

7
]. The diagram (a) defines the states σ1(D) σ2(D) of the trellis, where D is

a dummy variable representing a time offset. The trellis section in (b) corresponds to
the syndrome value s = 0 and is called the principal trellis. The complementary trellis
corresponds to s = 1 and is obtained by adding (0 s) to all the codewords labeling the
edges of the principal trellis.

A variation of the above method is proposed in [36], where the translation by a coset

6

representative is performed outside the decoder (see Figure 6). First the representative
(0 s) is computed (this step is called “inverse syndrome former”) and added to y. Then
the decoding is performed (in the coset of syndrome 0), and finally the representative
is retrieved from the output of the decoder. The advantage of this method is to use
a conventional Viterbi decoder without a need to modify it. This method can also be
applied to turbo codes [36]. In this case, two syndromes (s1, s2) are computed, one for
each constituent code. A representative of the coset is (0 s1 s2).

H ISF

usual channel
decoder

x

y

s

x̂

Decoder

Encoder

(0 s)

Figure 6: Implementation of the syndrome approach with a usual channel decoder. ISF
stands for inverse syndrome former and computes a representative of the coset with syn-
drome s.

The authors in [25] propose a SW scheme based on convolutional codes and turbo
codes that can be used for any code (not only systematic convolutional code). Rather
than considering the usual trellis based on the generator matrix of the code, the decoder
is based on a syndrome trellis. This trellis has first been proposed for binary linear
block codes [39], and was then generalized to convolutional codes [29]. Such a trellis can
enumerate a set of sequences in any coset. More precisely, a section corresponds to the
reception of n bits of x and n − k syndrome bits (see Figure 7). Thus, there exists 2n−k

possible trellis sections, one for each syndrome value. The decoder, knowing the syndrome
s, searches for the sequence with that particular syndrome which is closest to y. First
it builds the complete trellis. Each section of the trellis is determined by the syndrome.
Once the whole trellis is built, the Viterbi algorithm is performed and chooses the closest
sequence to the received y.

For LDPC codes, the belief propagation decoder can be adapted to take into account
the syndrome [17]. More precisely, the syndrome bits are added to the graph such that
each syndrome bit is connected to the parity check equation it is related to. The update
rule at a check node is modified in order to take into account the value of the syndrome
bit (known perfectly at the decoder).

2.2.2 The parity approach

The parity approach presented in Section 2.1.2 has been implemented using various chan-
nel codes, for instance turbo-codes [1, 5]. Consider a turbo encoder formed by the parallel
concatenation of two recursive systematic convolutional (RSC) encoders of rate (n−1)/n
separated by an interleaver (see Figure 8). For each sequence x (of length n) to be com-
pressed, two sequences of parity bits xp = (x1

p x2
p) are computed and transmitted without

7

x (D)

D D

2
σ

1
σ (D) (D)

s(D)

1

2

x (D)

(a)

x
1
x

2σ
1
σ

2

00

01

10

11

00

00

01

01

10

10

11

11

(b) s = 0

x
1
x

2σ
1
σ

2

11

11

10
10

01

01

00

00

00

01

10

11

(c) s = 1

Figure 7: Block diagram (a) and syndrome trellises (b-c) for the rate 1/2 convolutional
code H = [5 7]. The states σ1(D) σ2(D) are defined in the block diagram (a). Two trellis
sections are obtained: one for the syndrome value s = 0 (b) and one for s = 1 (c).

any error to the decoder. The turbo code is composed of two symbol Maximum A Pos-
teriori (MAP) decoders. Each decoder receives the (unaltered) parity bits together with
the SI y, seen as a noisy version of the sequence x. The concatenation (y xp) can be seen
as a noisy version of the coded sequence (x xp), where the channel is a parallel combi-
nation of a BSC and of a perfect channel. Therefore, the usual turbo decoder must be
matched to this combined channel. More precisely, the channel transitions in the symbol
MAP algorithm which do not correspond to the parity bits are eliminated. Such a scheme
achieves an n : 2 compression rate.

Pa priori Pextrinsic

Symbol MAP decoder

InterleaverDeinterleaver

RSC Encoder
rate n

n+1

RSC Encoder
rate n

n+1

Interleaver Decision

Deinterleaver

Interleaver

Symbol MAP decoder
Pextrinsic Pa priori

Pa posteriorix

y

x1
p

x2
p

x̂

Figure 8: DSC system for two binary correlated sources using punctured turbo codes.

2.3 Rate adaptation

Note that in all methods presented so far, in order to select the proper code and code rate,
the correlation between the sources needs to be known or estimated at the transmitter
before the compression starts. However, for many practical scenarios, this correlation may

8

vary, and rate adaptive schemes have to be designed. When the correlation decreases, the
rate bound moves away from the origin (see Figure 9). The rate of the code can then be
controlled via a feedback channel. The decoder estimates the Bit Error Rate (BER) at the
output of the decoder with the help of the log-likelihood ratios computed by the channel
decoder. If the Bit Error Rate (BER) at the output of the decoder exceeds a given value,
more bits are requested from the encoder. In this context of feedback controlled schemes,
the code should be incremental such that the encoder does not need to re-encode the data.
The first bits are kept, and additional bits are only sent upon request. In the following,
we present various rate-adaptive methods and specify whether they are incremental or
not.

B

for a given correlation

H(X) RX

H(Y)

RY

A

Slepian Wolf bound

Figure 9: Evolution of the SW region, when the correlation between the sources varies.

2.3.1 The parity approach

The parity approach has been originally proposed in order to easily construct rate adaptive
schemes (see Section 2.2). At the encoder, the parity bits are punctured (some parity bits
are not transmitted) and the decoder compensates for this puncturing, using standard
techniques coming from channel coding. The source sequence x is compressed through
some punctured parity bits x̃p, and the decoder retrieves the original sequence aided by the
SI y. The sequence (y x̃p) can be seen as the output of a channel which is a combination
of a perfect channel (unpunctured parity bits), an erasure channel (punctured parity
bits) and a BSC channel (correlation between the sources x and y). The method is by
construction incremental.

2.3.2 The syndrome approach.

Due to the optimality of the syndrome approach [40], a natural design of a rate-adaptive
scheme consists of puncturing the syndrome. However, using puncturing mechanisms
leads to performance degradation as reported in [33, 15, 37]. More precisely, it is shown
in [33] that the syndrome approach is very sensitive to errors or erasures, which indicates

9

that the puncturing of syndromes will lead to performance degradation. Therefore, the
first contributions avoid or compensate for this performance degradation.

A first method proposed in [15] punctures the parity bits rather than the syndrome
bits. Each puncturing pattern defines a new code for which a parity check matrix can be
computed. Then, one can construct a syndrome former and inverse syndrome former for
the new punctured code (presented in Section 2.1.2). This method can be implemented
using any code, in particular convolutional and turbo codes. However, the resulting code
is not incremental.

A first incremental SW coding scheme based on Serially Concatenated Accumulate
(SCA) codes is proposed in [7]. An inner encoder concatenates the first source bit with
the modulo-2 sum of consecutive pairs of source bits. The output of the accumulator is
interleaved and fed into a so-called base code, which is either an extended Hamming code
or a product of single parity check codes, which then computes the syndrome bits. The
accumulator code is of rate 1, so that the compression rate is controlled by the base code.
The base code is first decoded using a MAP decoder for extended hamming codes or a
belief propagation algorithm for product parity check codes. The accumulator code is
decoded with a symbol MAP algorithm decoder. A turbo-like algorithm iterates between
both decoders.

The authors in [37] investigate the puncturing of LDPC (Low density parity check
code) encoded syndromes. To avoid degrading the performance of the LDPC code, the
syndrome bits are first protected with an accumulator code before being punctured. Here
also, the accumulator code is of rate 1, so that the compression rate is not modified. The
combined effect of the puncturing and of the accumulator code is equivalent to merging
some rows of the parity check matrix by adding them. This defines a set of parity check
matrices, one for each rate. Then, for each parity check matrix, decoding is performed
according to the modified sum-product algorithm [17] presented in Section 2.1.1. An
interesting feature of this method is that it is incremental. If the merging of rows satisfies
a regularity rule (one can only add two rows that have no “1” at the same column
position), then the accumulated syndrome value of the new (smallest compression rate)
matrix can be computed by adding the previous syndrome value (corresponding to the
highest compression rate matrix) to the current one. The performance of the method is
shown in Figure 10 (a). Another method is proposed in [14]. Instead of protecting the
syndrome bits, the authors combine the syndrome and the parity approaches. Given an
input vector x of length n, the encoder transmits m syndrome bits plus l parity bits,
defining an (n+ l, n−m) linear error correcting code. Rate adaptation is then performed
by puncturing the parity bits.

In [25], the optimal decoder for convolutional codes under syndrome puncturing is
designed. It is shown that performance degradation due to syndrome puncturing can
be avoided without a need to encode (or protect) the syndromes. When syndrome bits
are punctured, the optimal decoder should in principle search for the closest sequence
in a union of cosets. This union corresponds to all possible syndromes that equal the
received syndrome in the unpunctured positions. Therefore, the number of cosets grows
exponentially with the number of punctured bits. A brute force decoder consists in

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

10
−4

10
−3

10
−2

10
−1

10
0

H(X|Y)

B
E

R

Turbo code versus LDPC

Rate 6 : 1 − turbo
Rate 6 : 1 − LDPC
Rate 6 : 1 − SW bound
Rate 2 : 1 − turbo
Rate 2 : 1 − LDPC
Rate 2 : 1 − SW bound
Rate 3 : 2 − turbo
Rate 3 : 2 − LDPC
Rate 3 : 2 − SW bound

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

H(X|Y)

B
E

R

Turbo code

Rate 3:1
Rate 2:1
Rate 3:2
Rate 4:3

(b)

Figure 10: Syndrome puncturing of an LDPC code [37] and of a turbo code [25]: two
rate adaptive schemes. Performance versus the entropy rate H(X|Y) and comparison
with the SW bounds. The 1/2-rate constituent code of the turbo code is defined by its
parity check matrix H = (23/33, 35/33). The overall compression rate for both schemes is
1 : 1, and puncturing leads to various compression rates. (a) Comparison of the syndrome
punctured LDPC and turbo code for a blocklength of 2046. (b) Performance of the turbo
code for an interleaver of size 105.

performing a ML algorithm in each coset, but then the decoding complexity of such a
method would grow exponentially with the number of punctured bits. On the other
hand, if the decoder is not modified, it leads to systematic errors, since the search may
be performed in the wrong coset. The method proposed in [25] is based on the syndrome
trellis presented in Section 2.1.1. Whenever some syndrome bits are punctured, a new
trellis section is constructed as the union of the trellis sections compatible with the received
punctured syndrome. This enumerates the sequences in the union of cosets. The resulting
trellis is called the super trellis (see Figure 11) and the Viterbi algorithm is performed on
this new trellis. The complexity of the proposed algorithm grows only linearly with the
code blocklength and with the number of punctured positions. The authors in [25] also
show that this decoder can be applied to turbo-codes. The performance of the method is
shown in Figure 10.

3 Non-asymmetric SW coding

For the sake of simplicity, we focus again on the two-user setting and we now consider
the case where both sources are compressed in order to reach any point of the segment
between A and B in Figure 1 (b). For some applications, it may be desirable to vary the
rates of each encoder while keeping the total sum-rate constant. This set-up is referred
to as non asymmetric. It will be said to be symmetric when both sources are compressed

11

00
σ
1

σ 2
x

1
x

11

10

01

2

Figure 11: Super trellis for the rate 1/2 convolutional code defined by its polynomial
parity check matrix H(D) = [5 7]. This trellis is the union of the two trellis sections of
Figure 7.

at the same rate (point C in Figure 1 (b)). Note that both sources can be compressed at

the same rate if and only if max(H(X|Y), H(Y |X)) ≤
H(X,Y)

2
≤ min((H(X), H(Y)).

Several methods can be used to reach any point of the SW rate bound. The first approach
called time sharing uses two asymmetric coder/decoder pairs alternatively. Other methods
code each input sequence x and y with linear channel codes. For each source, part of the
information bits plus syndrome or parity bits are transmitted. The decoder then needs
to estimate the n-length sequences x and y knowing the partial information bits, the
syndrome or parity bits and the correlation between x and y.

3.1 Time-sharing

Let x and y again denote two random binary correlated sequences of source symbols of
length n. It is assumed that the correlation is defined by a BSC of cross-over probability
p. All points of the segment between A and B of the SW rate bound are achievable
by time sharing. More precisely, a fraction α of samples (α.n samples, where n is the
sequence length) is coded at the vertex point A, that is, at rates (H(Y), H(X|Y)), with
the methods described in Section 2, and a fraction (1 − α) of samples is then coded at
rates (H(X), H(Y |X)) corresponding to the corner point B of the SW rate region. This
leads to the rates RX = αH(X) + (1 − α)H(X|Y) and RY = (1 − α)H(Y) + αH(Y |X).

3.2 The parity approach

The sequences x and y of length n are fed into two linear channel coders (turbo coders
[6] or LDPC coders [26]) which produce two subsequences xh = (x1 . . . xl) and yh =
(yl+1 . . . yn) of information bits and two sequences xp

1 . . . xp
a and yp

1 . . . yp

b of parity bits,
where a ≥ (n − l)H(X|Y) and b ≥ lH(Y |X). The achievable rates for each source are
then RX ≥ l

n
H(X) + a

n
≥ l

n
H(X) + n−l

n
H(X|Y) and RY ≥ n−l

n
H(Y) + b

n
≥ n−l

n
H(Y) +

l
n
H(Y |X). The SW boundary can be approached by varying the ratio l

n
between 0 and

12

1. Unlike the time-sharing approach, the parity bits are computed on the entire input
sequences of length n. The sequence (xhxp) is regarded as a noisy version of the sequence
(ypyh). As in the asymmetric set-up, the channel is a parallel combination of a BSC
and of a perfect channel. The decoder then needs to estimate x and y given (xhxp) and
(ypyh).

A first practical implementation of the parity approach is proposed in [9] with turbo
codes, and considers the particular case of symmetric SW coding. The solution is then
extended to reach any point of the SW boundary in [6], [8]. In [8], the two information
sequences of length n are encoded with a systematic punctured turbo code. The infor-
mation bits of the second source are interleaved before being fed to the encoder. All the
systematic bits plus a subset of the parity bits are punctured in order to leave only a bits
for the sequence x and b bits for the sequence y. Each turbo decoder proceeds in the
standard way, with the difference that part of the bits are received via an ideal channel.
After each iteration, the measures obtained as a result of a turbo decoding on each input
bit of one sequence, e.g. x, are passed as additional extrinsic information to the turbo
decoder used to estimate the sequence y, via the binary symmetric correlation channel
(i.e. P(yk = 0) = (1 − p)P(xk = 0) + pP(xk = 1)).

Another implementation of the parity approach is described in [26] with LDPC codes,
and later studied in [27] for short to moderate length codes. The decoder needs to
determine an n-length sequence from the part of information bits and parity bits received
for the sequence x and from the correlated sequence y. For this, a message-passing
algorithm is used by setting the LLR (Log likelihood ratio) of the bits received via the
ideal channel to infinity. The LLR of the bits received via the correlation channel are
set to ± log(1−p

p
). The LLR for the punctured bits are set to zero. Two sets of degree

distributions for the variables nodes are used to account for the fact that information bits
are received via the correlation channel whereas the parity bits are received via an ideal
channel.

3.3 The syndrome approach

Let us consider an (n, k) linear channel code C defined by its generator matrix Gk×n and
its parity-check matrix H(n−k)×n. A syndrome approach was first proposed in [20], based
on the construction of two independent linear binary codes C

1 and C
2 with G1 and G2 as

generator matrices, obtained from the main code C. More precisely, the generator matrices
G1 and G2 of the two subcodes are formed by extracting m1 and m2 lines respectively,
where m1+m2 = k, from the matrix G of the code C. The parity check matrices H1 and H2

are then of size (n−m1)×n and (n−m2)×n respectively. A geometric interpretation of the
code splitting is shown in Figure 12. Each coder sends a syndrome, defined as sx = xHT

1

and sy = yHT
2 respectively, to index the cosets of C

1 and C
2 containing x and y. The

total rate for encoding the input sequences of length n is then n−m1 + n−m2 = 2n− k
bits. The cosets containing x and y are translated versions of the codes C

1 and C
2 (i.e.,

the cosets having null syndromes) by vectors tx and ty. This translation is illustrated in
Figure 12, where the addition by the translation vector is performed over the finite field

13

{0, 1}. The codes C
1 and C

2 must be chosen such that all pairs (x,y) can be determined
uniquely given the two coset indexes. We now explain how to determine a pair (x,y)
from a usual ML decoder.

001

110

100 101

111

011010

000

C
2
01 = {◦}

C
2
10 = {�}

C
2
11 = {�}

C
2 = {•}

C1
01 = {◦}

C1
10 = {�}

C
1
11 = {�}

C1 = {•}

001

110

100 101

111

011010

000

Figure 12: Splitting the code of Figure 3 into two subcodes: code C
1 defined by G1 = (110)

or H1 =
(

110
001

)

(left); code C
2 defined by G2 = (101) or H2 =

(

010
101

)

(right).

Let uxG1 and uyG2 define codewords in C
1 and C

2. By definition these vectors have
a null syndrome. All possible codewords in a coset of syndrome s can be enumerated by
translating a codeword belonging to the coset of null syndrome by a vector t belonging
to the coset of syndrome s (see equation (1)). If the code is systematic, a candidate for
the translating vector is t = (0 s), as explained in Section 2.2. Thus, x and y can be seen
as translated versions of codewords belonging to the cosets of null syndrome of the codes
C

1 and C
2 respectively. The vectors x and y can thus be expressed as x = uxG1 ⊕ (0 sx),

y = uyG2 ⊕ (0 sy), where tx = (0 sx) and ty = (0 sy) are the representatives of the cosets
of C

1 and C
2 with syndromes sx and sy. The decoder must search for a pair of codewords,

one from each translated coset of C
1 and C

2. When receiving the syndromes sx and sy, it
first finds a codeword c of the main code C (which is actually the error pattern between
x and y) that is closest to the vector t = tx ⊕ ty = (0 sx) ⊕ (0 sy). The error pattern
x ⊕ y is the minimum weight codeword having the same syndrome as the vector t. If
the code is systematic, the sequences x and y are reconstructed as x̂ = ûxG1 ⊕ tx and
ŷ = ûyG2 ⊕ ty, where ûx and ûy are the systematic bits of the codeword c. This method
achieves the optimal SW compression sum-rate if the global code C achieves the capacity
of the equivalent correlation channel (between x and y). The number of lines assigned
to G1 (and therefore to G2) allows to choose any rate on the dominant face of the SW
region (between points A and B in Figure 1 (b)). The above ideas are further developed
in [31], [32], for non-systematic linear codes. The code construction has been extended in
[28] to the case where the sources X and Y are binary but non uniformly distributed.

In a second approach proposed in [10], the vectors x and y belong to the same coset of
a unique code C, which is the translated version of the coset of null syndrome by a vector

14

t. Each source vector is identified by a syndrome computed with the parity check matrix
H of the code C plus part of the source information bits [10]. The syndromes sT

x = HxT

and sT
y = HyT , of length (n− k), are thus computed for both sequences and transmitted

to the decoder. In addition, the k′ first bits of x (denoted xk′

1) and the k−k′ next bits for
the source y (denoted yk

k′+1), are transmitted as systematic bits, where k′ is an integer
so that k′ ∈ [0, k]. The total rate for the sequences x and y of length n is respectively
n − k + k′ and n − k′ bits. The structure of the coders is depicted in Figure 13. Note
that k′ = k and k′ = 0 correspond to the two asymmetric set-ups with rates given by the
corner points A and B of the SW region.

yk
k′+1

Hxn
1

n
Encoder X

k′

n − k
sx

xk′

1

Hyn
1

n
Encoder Y

k − k′

n − k
sy

Figure 13: The non asymmetric coders in the syndrome approach [10]. A single code C

(determined by the parity check matrix H) is used for each sequence to be compressed.

As in the asymmetric case, the representative of the coset is thus the concatenation
of the transmitted information bits (k′ bits for the sequence x) and of the (n− k)-length
syndrome vector. As in the first approach, when receiving the syndromes sx and sy, the
decoder must find a codeword c of the code C that is closest to the translating vector
t = tx ⊕ ty = (0 sx) ⊕ (0 sy). For this, it first computes sz = sx ⊕ sy, which is the
syndrome of the error pattern z between x and y (z = x⊕ y). In [10], a modified LDPC
decoder estimates ẑ = x̂ ⊕ y from the syndrome sz and the all-zero word of size n (see
Figure 14) [16]. The error pattern z is the smallest weight codeword with syndrome sz.
When convolutional and turbo codes are used, the estimation of the error pattern can be
performed with a conventional Viterbi decoder and an inverse syndrome former (ISF) [34]
or with a syndrome decoder [25] (see Section 2.2 for further details).

Once the error pattern is found, the subsequences of information bits xk
k′+1 and yk′

1

can be retrieved from the error pattern z = x ⊕ y as (see Figure 14-right)

x̂k
k′+1 = yk

k′+1 ⊕ ẑk
k′+1 and ŷk′

1 = xk′

1 ⊕ ẑk′

1 . (3)

Subsequences of n−k bits, i.e. xn
k+1 and yn

k+1, remain to be computed for both sequences.
Let us assume that H = (A B), where B is an invertible square matrix of dimension
(n − k) × (n − k). Note that for a rate k/n channel code, the parity check matrix
H has rank n − k. Therefore, one can always find a permutation to be applied on
the columns of H so that the resulting parity check matrix has the right form. Thus,
sx = Hx = (A B)x = A xk

1 ⊕ B xn
k+1, and the remaining n − k unknown bits of the

15

n
b0

n − k

n − k

sx

sy

s

â = arg min
a:a∈Cs

dH(a,b)
Decoder

â ẑ

ŷk01 ykk0+1 ŷnk+1
ẑ

xk01 x̂kk0+1 x̂nk+11.

2.

ẑkk0+1 � ykk0+1

sx
B�1 (sx � A x̂k1)

Figure 14: Non-asymmetric decoder: estimation of the error pattern z = x ⊕ y (left);
reconstruction of the source sequence x (right).

sequence x (and similarly for the sequence y) can be computed as

x̂n
k+1 = B−1 (sx ⊕ A x̂k

1), (4)

where B−1 denotes the inverse of the matrix B [10]. The authors in [10] have used LDPC
codes.

If the error pattern is not perfectly estimated, the estimation of the remaining symbols
xn

k+1 in equation (4) may yield error propagation. Note that the unknown positions in the
vector x are design parameters. These positions (or equivalently the columns of the matrix
H to be extracted in order to build the matrix B) can be chosen such that the inverse
B−1 is as sparse as possible. Figure 15 shows the BER of the error pattern z (continuous
line) and its effect on the estimation of the source sequence x. Performance is shown for a
convolutional code. The dotted curve represents the BER, when equation (4) is performed
with an arbitrary invertible matrix B. This BER can be lowered to the dashed curve,
if a matrix B with sparse inverse is chosen. This limits the error propagation. Finally,
the error propagation can be further reduced, if one applies a modified decoder to solve
equation (4). This decoder (Viterbi for a convolutional code) is matched to a channel
which combines a perfect channel (for xk′

1), a BSC (for x̂k
k′+1 with crossover probability,

the BER of z) and an erasure channel (for xn
k+1). Interestingly, with this decoder the

BER of x remains almost the same as that of z.

3.4 Source splitting

Source splitting [22] is another approach to vary the rates between the two encoders. The
approach is asymptotic and involves splitting the source into sub-sources having a lower
entropy. More precisely, it transforms the two source problem into a three source problem
where one source, e.g. X is split into two i.i.d discrete sources U and V as U = XT and
V = Y (1−T). T is an i.i.d. binary source (which can be seen as a time-sharing sequence).
By varying P(T = 1), one can vary H(Y |U) between H(Y) and H(Y |X). The sum-rate

16

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−4

10
−3

10
−2

10
−1

10
0

H(X|Y)

B
E

R

X − Arbitrary matrix B

X − Sparse B−1

X − BCJR
Z
SW bound

Figure 15: Error propagation in the estimation of the source X. The convolutional code
is defined by its parity check matrix H =

(

11 15 06
15 12 17

)

and is punctured over a period of four
trellis sections in order to get a 2 : 1 compression rate for the source.

becomes RX +RY = RU +RV +RY = H(U |T)+H(Y |U)+H(V |U, Y). A random coding
argument is used to show that the rate triple is achievable [22], however no constructive
codes are proposed.

3.5 Rate adaptation

In practical applications, the correlation between the two sources may not be known at
the time of code design. It may thus be necessary, as in the asymmetric set-up, to have
solutions allowing for flexible rate adaptation to any correlation between the two sources.
Non-asymmetric rate-adaptive SW coding/decoding schemes are direct extensions of their
asymmetric counterparts. Rate adaptation is performed by simply puncturing informa-
tion, parity or syndrome bits in the schemes described above.

In the parity approach, we have seen that for two correlated sequences of length n, the
rate allocation between the two sequences is controlled by the number l of information bits
transmitted for each. The change in the rate allocation between the two sources is thus
performed by puncturing more or less information bits. For a given rate share between
the two sources, rate adaptation to varying correlation is achieved by simply puncturing
the parity bits. Standard decoding of punctured channel codes can then be applied.

For the syndrome approaches, as explained in Section 2.3, the application of the punc-
turing is less straightforward. Puncturing the syndrome bits may degrade the performance
of the code. The approach considered in [35], similarly to [37] for the asymmetric set-
up, consists of first protecting the syndromes with an accumulator code. The effect of
the accumulator code followed by the puncturing is equivalent to merging some rows of
the parity check matrix H by adding them, thus constructing a matrix Hi of dimension

17

Punct

Punctyn
1

n
Encoder Y

ki − k′

n − ki

H

Hxn
1

n
Encoder X

k′

n − ki

sx

Decoder

â ẑ

s

â = arg min
a:a∈Cs

dH(a,b)

yki

k′+1

xk′

1

b0
n

sy

feedback

feedback

Figure 16: Rate-adaptive coding/decoding scheme.

(n − ki) × n, of rank n − ki. In the matrix Hi, with appropriate permutation, one may
exhibit a submatrix Bi of dimension (n − ki) × (n − ki) which is invertible (see equation
(4)). The positions of the k′ (k′ ∈ [0, ki]) and ki − k′ information bits transmitted for
the sequences x and y respectively must then be chosen so that they correspond to the
positions of the remaining non-free ki columns of Hi. If the correlation is not known to
the encoder, the rate may be controlled via a feedback channel. In this case, once the
error pattern ẑ has been estimated, the decoder verifies if the condition ẑHT = sz is
satisfied. If this condition is not satisfied, it then requests for more syndrome bits. Note
that, if the error pattern is not perfectly estimated, the last step of the decoding algo-
rithm represented by equation (4) may yield error propagation. The coding and decoding
structures are depicted in Figure 16. Figure 17 illustrates the rate points achieved with a
non-symmetric SW coding/decoding scheme based on LDPC codes.

4 Advanced topics

4.1 Practical code design based on source codes

Code design based on source alphabet partitioning: The use of source codes for
SW coding has first been explored in [2] considering Huffman codes. The approach relies
on partitioning the source alphabet into groups of symbols. One source Y is coded with a
Huffman code designed according to its stationary probability P(Y). The alphabet of the
second source X is partitioned so that two symbols xi and xj are not grouped together
if there exists a symbol y such that P(xi, y) > 0 and P(xj, y) > 0. The joint p.m.f of
(X,Y) may need to be slightly modified, e.g. by thresholding the smallest values and
then renormalizing, so that this condition is verified. In addition, the entropy of the
group index must be minimum, and approach at best H(X|Y). Knowing the SI symbol
y, and the group index, the decoder can find the transmitted symbol x. The above code

18

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
X
 (bits /source symbol)

R
Y
 (

bi
ts

/s
ou

rc
e

sy
m

bo
l)

p = 0.01, gap = 0.0562 bits
p = 0.01, theoretical bound
p = 0.05, gap = 0.0907 bits
p = 0.05, theoretical bound
p = 0.13, gap = 0.0687 bits
p = 0.13, theoretical bound

Figure 17: Rate points achieved for different parameters p of the binary symmetric cor-
relation channel.

design based on alphabet partitioning has been formalized and generalized in [42] for
arbitrary p.m.f. P(X,Y), assuming memoryless sources. The partition can be coded with
a Huffman or an arithmetic code.

Punctured and overlapped arithmetic codes: Different solutions based on over-
lapped arithmetic [11] and quasi-arithmetic (QA) [3] codes, as well as punctured (quasi)-
arithmetic codes [18] have appeared recently for the case of binary sources. Arithmetic
coding recursively divides the interval [0, 1) according to the source probabilities. Let us
consider a binary memoryless source with probabilities denoted P0 and P1. At each sym-
bol clock instant n, the current interval [Ln, Hn) is divided into two subintervals whose
widths are proportional to P0 and P1 = 1 − P0 respectively. One of these subintervals is
selected according to the value of the next symbol and becomes the current interval. Once
the last symbol is encoded, the encoder produces a sequence of bits identifying the final
sub-interval. Practical implementations of arithmetic coding have been first introduced
in [23] and [19], and further developed in [24], [38].

The encoding and decoding processes can be modeled as state machines. But, with
optimal arithmetic coding, the number of states can grow exponentially with the sequence
length. Controlled approximations can reduce the number of possible states without
significantly degrading compression performances [13]. This fast, but reduced precision,
implementation of arithmetic coding is called quasi-arithmetic coding [13]. Instead of
using the real interval [0, 1[, quasi-arithmetic coding is performed on an integer interval
[0, T [. The value of T controls the trade-off between complexity, the number of states,
and compression efficiency.

The average code length achieved per input source symbol is very close to the source
entropy. To further reduce the rate down to the conditional entropy of two correlated

19

sources, two strategies can be considered: puncturing the sequence of encoded bits [18]
or overlapping the symbol probability intervals of the arithmetic [11] or quasi-arithmetic
coder [3]. For the overlapped (quasi)-arithmetic codes, at a given instant n, the prob-
ability interval [Ln, Hn) is partitioned into two sub-intervals [Ln, P0(Hn − Ln) + ρT/2)
associated to the symbol 0 and [P0(Hn−Ln)−ρT/2, Hn) associated to the symbol 1. The
parameter ρ controls the overlap between the sub-intervals. The larger the overlap, the
lower the bit rate but the higher the uncertainty on the decoded sequence. In both cases,
overlapped and punctured codes, the resulting code is not uniquely decodable anymore.
The ambiguity on the encoded sequence of symbols can be removed with the help of the
SI (correlated source) and of a symbol MAP decoder.

To explain the decoding algorithm, let us first consider the punctured solution. Let x

and y be two correlated sequences of length L(x). The sequence x is coded with a QA code
producing a sequence of bits u of length L(u) which is then punctured. Given the received

QA coded bitstream u
L(u)
1 and the correlated sequence y

L(x)
1 (SI), the symbol posterior

marginals P(Xn = xn |u
L(u)
1 , y

L(x)
1) are computed by running a BCJR algorithm [4] on the

state model of the QA automaton. To cope with the fact that the QA automaton contains
transitions corresponding to a varying number of symbols and a varying number of bits,
the state model used in the decoding must keep track of the number of symbols being coded
at a particular bit clock instant k. It is hence defined by the pairs of random variables
Vk = (Nk,Mk), where Nk denotes the state of the QA automaton, and Mk represents the
symbol clock value at the bit clock instant k [12]. Since the variable Mk corresponds to
the symbol clock, it accounts for the correlation between the encoded sequence and the SI.
The transition probabilities on the state model Vk = (Nk,Mk) are equal to the transition
probabilities between states Nk of the QA automaton, if the numbers of bits and symbols
associated to this transition match the one defined by the automaton. The transition
probabilities are equal to zero otherwise. The probabilities of transition between states
Nk of the QA automaton depend on the source statistics, and can account for source
memory. Thus, for each state ν = (n,m), the BCJR algorithm computes the probabilities

αk(ν) = P(Vk = ν;Uk
1) and βk(ν) = P(U

L(U)
k+1 |Vk = ν). The branch metric γk(ν

′|ν)
used for the transition τ between two states ν = (n,m) and ν ′ = (n′,m′) is given by
γk(ν

′|ν) = P(ν ′|ν) × P(bτ) × P(xτ |yτ), where bτ and xτ denote the subsequences of bits
and symbols associated to the given transition τ on the QA automaton. The probability
P(bτ) is computed considering a probability of 0.5 for the punctured positions. The term
P(xτ |yτ) represents the correlation channel between X and Y .

The decoding for the overlapped quasi-arithmetic codes proceeds in the same manner
as for the punctured solution. The only difference is in the automaton which, in the case
of overlapped codes, does not only depend of the distribution of the source X but also
of the overlap factor ρ (for details see [18] and [3]). A second difference is in the branch
metric γk(ν

′|ν) in which the term P(bτ) disappears, since, in this case, all the coded bits
are known to the decoder (and not punctured as in the previous method).

20

4.2 Generalization to non-binary sources

In the chapter so far, only binary correlated sources have been considered. Practical ap-
plications often involve non-binary, e.g. q-ary, sources. In practice, before being encoded,
the q-ary sources are first binarized. Each resulting sequence of bits is then fed to the SW
coder. This is, for example, the case in [43] where the authors describe the principle using
turbo codes to compress both sources X and Y . For each source, the sequences of bits
at the output of the “symbol-to-bit” converter are interleaved and input to a punctured
turbo coder. The turbo decoders act at a bit level in a standard fashion, but information
exchange is performed between the two turbo decoders at the symbol level. The a pos-
teriori probabilities computed by a turbo decoder for each input bit is converted into a
measure on the corresponding q-ary symbol. The resulting symbol probabilities are then
multiplied by the conditional probabilities characterizing the correlation channel and fed
into the second turbo decoder as extrinsic information.

4.3 Generalization to M sources

The asymmetric and non-asymmetric coding schemes presented above can be extended
to more than 2 sources. The practical code design approach proposed in [20] has been
extended in [31] and [32] for M sources (see Section 3.3). Each sub-code is constructed by
selecting a subset of rows from the generator matrix G of the starting code C. Examples
of design are given for IRA codes. However, the method is shown to be suboptimal when
the number of sources is greater (or equal) than three. The parity approach described in
[26] has also been extended to M sources in [27]. The sequences xi, i = 1, . . . M , of length
n are fed into M LDPC coders which produce subsequences of ai × k information bits
and of (1 − ai) × k parity bits. Joint decoding of the M sources is then performed.

5 Conclusions

This chapter has explained how near-capacity achieving channel codes can be used to ap-
proach the SW rate bound. Although the problem is posed as a communication problem,
classical channel decoders need to be modified. This chapter has outlined the different
manners to adapt channel decoding algorithms to the Slepian-Wolf decoding problem.
In the approaches presented, it is assumed that syndrome or parity bits are transmitted
over a perfect channel. As explained above, the equivalent communication channel is thus
the parallel combination of a BSC and a perfect channel. In some applications, this may
not be the case: syndrome or parity bits may have to be transmitted on an erroneous
communication channel. Distributed joint source-channel coding schemes, in which the
SW code acts as a single code for both source coding and channel error correction, can
be found in the literature to address this particular scenario. This last problem however
remains a field of research. Finally, the use of SW codes is currently being explored for a
number of applications such as low-power sensor networks, compression of hyperspectral
images, mono-view and multi-view video compression, error-resilient video transmission,

21

and secure fingerprint biometrics. These applications are presented in other chapters of
this book.

22

References

[1] A. Aaron and B. Girod. Compression with side information using turbo codes. Pro-
ceedings of the IEEE International Data Compression Conference (DCC), 0(0):252-
261, Apr 2002.

[2] A.K. Al Jabri and S. Al-Issa. Zero-error codes for correlated information sources.
Proceedings of Cryptography, 0(0):17-22, Dec. 1997.

[3] X. Artigas, S. Malinowski, C. Guillemot, L. Torres. Overlapped quasi-arithmetic
codes for distributed video coding. Proceedings of the IEEE International Conference
on Image Processing (ICIP), pp. II.9-II.12, Sept. 2007

[4] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal decoding of linear codes for
minimizing symbol error rate. IEEE Transactions on Information Theory, IT-20, pp.
284-287, Mar. 1974.

[5] J. Bajcsy and P. Mitran. Coding for the Slepian-Wolf problem with turbo codes. Pro-
ceedings of the IEEE International Global Communications Conference (Globecom),
pp. 1400-1404, Dec. 2001.

[6] F. Cabarcas and J. Garcia-Frias. Approaching the Slepian-Wolf boundary using
practical channel codes. Proceedings IEEE International Symposium on Information
Theory, pp. 330, June 2004.

[7] J. Chen, A. Khisti, D.M. Malioutov and J.S. Yedidia. Distributed source coding
using serially-concatenated-accumulate codes, roceedings of the IEEE International
Information Theory Workshop, pp.209-214, Oct. 2004.

[8] J. Garcia-Frias and F. Cabarcas. Approaching the Slepian-Wolf boundary using
practical channel codes. Signal Processing, 86(11):3096-3101, 2006.

[9] J. Garcia-Frias and Y. Zhao. Compression of correlated binary sources using turbo
codes. IEEE Communications Letters, 5(0):417-419, Oct. 2001.

[10] N. Gehrig and P.L. Dragotti. Symmetric and asymmetric slepian–wolf codes with
systematic and non–systematic linear codes. IEEE Communications Letters, 9(1):61-
63, Jan. 2005.

[11] M. Grangetto, E. Magli, and G. Olmo. Distributed arithmetic coding. IEEE Com-
munications letters, 11(11):883-885, Nov. 2007.

[12] T. Guionnet and C. Guillemot. Soft and joint source-channel decoding of quasi-
arithmetic codes. EURASIP Journal on applied signal processing, 3(0):394-411, Mar.
2004.

[13] P. G. Howard and J. S. Vitter. Image and Text Compression. Kluwer Academic
Publisher, pp. 85-112, 1992.

23

[14] J. Jiang, D. He and A. Jagmohan, Rateless Slepian-Wolf coding based on rate
adaptive Low-Density-Parity-Check codes. Proceedings of the IEEE International
Symposium on Information Theory, pp. 1316-1320, June 2007.

[15] J. Li and H. Alqamzi. An optimal distributed and adaptive source coding strategy
using rate–compatible punctured convolutional codes. Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, (ICASSP), vol.3,
pp. iii/685-iii/688, pp. 18-23 Mar. 2005.

[16] A.D. Liveris, Z. Xiong, and C.N. Georghiades. Compression of binary sources with
side information at the decoder using LDPC codes. IEEE Communications Letters,
6(10):440-442, Oct. 2002.

[17] A. D. Liveris, Z. Xiong, and C. N. Georghiades. Compression of binary sources with
side information at the decoder using LDPC codes. IEEE Communications Letters,
6(0):440–42, Oct. 2002.

[18] S. Malinowski, X. Artigas, C. Guillemot and L. Torres. Distributed source coding us-
ing punctured quasi-arithmetic codes for memory and memoryless sources. submitted
to IEEE International Workshop on Signal Processing Systems, Oct. 2008.

[19] R. Pasco. Source coding algorithms for fast data compression. PhD thesis, Dept. of
Electrical Engineering, Stanford Univ., Stanford Calif., 1976.

[20] S. S. Pradhan and K. Ramchandran. Distributed source coding: symmetric rates
and applications to sensor networks. Proccedings of the IEEE International Data
Compression Conference (DCC), 0(0):363-372, Mar. 2000.

[21] S. S. Pradhan and K. Ramchandran. Distributed source coding using syndromes
(DISCUS): Design and construction. Proceedings of the IEEE International Data
Compression Conference (DCC), 0(0):158-167, Mar. 1999.

[22] B. Rimoldi and R. Urbanke. Asynchronous Slepian-Wolf Coding via Source-Splitting.
Proceedings of the IEEE International Symposium on Information Theory, pp. 271,
July 1997.

[23] J. J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM J. Res.
Develop., vol. 20, pp. 198-203, May 1976.

[24] ——, Arithmetic codings as number representations, Acta Polytech. Scand. Math.,
vol. 31, pp. 44-51, Dec. 1979.

[25] A. Roumy, K. Lajnef, and C. Guillemot. Rate-adaptive turbo-syndrome scheme
for Slepian-Wolf coding. Proceedings of the IEEE Asilomar Conference on Signals,
Systems, and Computers, vol. 0, Nov. 2007.

24

[26] M. Sartipi and F. Fekri. Distributed source coding in wireless sensor networks using
LDPC coding: The entire Slepian-Wolf rate region. Proceedings of the IEEE Wireless
Communications and Networking Conference, 4(0):1939-1944, Mar. 2005.

[27] M. Sartipi and F. Fekri Distributed Source Coding Using Short to Moderate Length
Rate-Compatible LDPC Codes: The Entire Slepian-Wolf Rate Region IEEE Trans-
actions on Communications, Vol. 56, No. 3, pp. 400-411, Mar. 2008.

[28] D. Schonberg, K. Ramchandran and S.S. Pradhan. Distributed code constructions
for the entire Slepian-Wolf rate region for arbitrarily correlated sources Proceedings
of the IEEE International Data Compression Conference (DCC), 0(0):292-301, Mar.
2004.

[29] V. Sidorenko and V. Zyablov. Decoding of convolutional codes using a syndrome
trellis. IEEE Transactions on Information Theory, 0(0):1663-1666, Sept. 1994.

[30] D. Slepian and J.K. Wolf. Noiseless Coding of Correlated Information Sources. IEEE
Transactions on Information Theory, vol. IT-19, pp. 471-480, July 1973.

[31] V. Stankovic, A. D. Liveris, Z. Xiong, and C. N. Georghiades. Design of Slepian-
Wolf codes by channel code partitioning. Proceedings of the IEEE International Data
Compression Conference, (DCC), 0(0):302-311, 2004.

[32] V. Stankovic, A. D. Liveris, Z. Xiong, and C. N. Georghiades. On code design for
the Slepian-Wolf problem and lossless multiterminal networks. IEEE Transactions
on Information Theory, 52(4):1495-1507, Apr. 2006.

[33] P. Tan and J. Li. Enhancing the robustness of distributed compression using ideas
from channel coding. Proceedings of the IEEE International Global Telecommunica-
tions Conference, (GLOBECOM), vol. 4, pp. 5, Dec. 2005.

[34] P. Tan and J. Li. A practical and optimal symmetric Slepian-Wolf compression
strategy using syndrome formers and inverse syndrome formers. Proceeding of 43rd
Annual Allerton Conference on Communication, Control and Computing, Sept. 2005.

[35] V. Toto-Zarasoa, A. Roumy and C. Guillemot. Rate-adaptive codes for the entire
Slepian-Wolf region and arbitrarily correlated sources. Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr.
2008.

[36] Z. Tu, J. Li, and R. S. Blum. An efficient SF-ISF approach for the Slepian-Wolf
source coding problem. Eurasip Journal on Applied Signal Processing, 6(0):961-971,
May 2005.

[37] D. Varodayan, A. Aaron, and B. Girod. Rate-adaptive codes for distributed source
coding. EURASIP Signal Processing, 86(11):3123–3130, Nov. 2006.

25

[38] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression.
Communications of the ACM, 30(6):520–540, June 1987.

[39] J. K. Wolf. Efficient Maximum Likelihood decoding of linear block codes using a
trellis. IEEE Transactions on Information Theory, 24(0):76-80, Jan. 1978.

[40] A. Wyner. Recent results in the Shannon theory. IEEE Transactions on Information
Theory, 20(0):2-10, 1974.

[41] R. Zamir, S. Shamai, and U. Erez. Nested linear/lattice codes for structured multi-
terminal binning. IEEE Transactions on Information Theory, 48:1250-1276, 2002.

[42] Q. Zhao and M. Effros, Optimal code design for lossless and near lossless source
Coding in multiple access network. Proceedings of the IEEE International Data
Compression Conference (DCC), 0(0):263-272, Mar. 2001.

[43] Y. Zhao. and J. Garcia-Frias, Data compression of correlated non-binary sources us-
ing punctured turbo codes. Proceedings of the IEEE International Data Compression
Conference (DCC), 0(0):242-251, Apr. 2002.

26

