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Blind Modulation Classification for Cognitive
Satellite in the Spectral Coexistence context

Vincent Gouldieff, Member, IEEE, Jacques Palicot, Member, IEEE, and Steredenn Daumont, Member, IEEE

Abstract—The scarcity of the usable satellite spectrum has led
to a need for advanced communication techniques. Among them,
multi-satellite networks have been promoted for their ability to
reuse the frequency bands in a more aggressive manner. This is
made possible by sharing both the spectral and spatial degrees of
freedom. Meanwhile, the concept of Cognitive Satellite (CS) was
deeply investigated to make the best of these novel architectures.
In this context, very few blind signal processing methods were
proposed to tackle the co-channel interference issues entailed
by such systems. Herein, we develop a novel low-complexity
algorithm for blind Automatic Modulation Classification (AMC)
and parameters estimation in the strongly interfering scenario.
The proposed method rely on an Analytical study of the Mth-
Power nonlinear Transformation (AMPT) of the co-channel
mixture. Theoretical analysis and extensive simulations show the
effectiveness of the proposed method in various scenarios.

Index Terms—Blind Signal Processing, Cognitive Satellite,
Coexistence Scenario, Automatic Modulation Classification, M th-
Power nonlinear Transformation.

I. INTRODUCTION

NEXT generation of Satellite Communications (SatComs)
systems mainly aims at enhancing the global network

throughput while ensuring Quality of Service (QoS) [1]. The
advent of multi-satellite and hybrid networks using multibeam
technologies has led to numerous spectrum sharing techniques
[2]. To push the global capacity optimization into a corner,
the concept of Cognitive Radio [3] has been considered for
SatComs to make the best use of the available diversities
(e.g., spectral, temporal, spatial diversities). The paradigm of
Cognitive Satellite [4] was born. Thereby, strong co-channel
interference may occur between the primary link and the
secondary links at both the uplink and the downlink. For
instance, such a scenario is encountered when two or more
multibeam satellites share the same geographic region [5] or
when a cellular network is built on a dual-satellite system [6].

In the cognitive context, several features of the interfering
signals may be dynamically chosen so that the spectral effi-
ciency is maximized [7]. In order to cut the overhead down,
these parameters are not transmitted and it becomes mandatory
to estimate them at the receiver [8]. Classical methods of
blind signal processing applied on the entailed co-channel
mixture rapidly show their limits. Their inability to correctly
infer the Signal-of-Interest (SoI) is all the more true when
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the composite power of the interferers grows. Actually, while
the SINR (Signal to Interference-plus-Noise Ratio) of the SoI
weakens, the available statistical properties of the interferers
are not exploited as useful information for the inference of the
unknown features of the co-channel signals.

Consequently, classical1 methods for Automatic Modula-
tion Classification (AMC) applied on co-channel mixtures
of signals perform poorly. This fact has recently motivated
the scientific community to investigate the Multiuser2 AMC
(MAMC) issue. In the blind scenario, MAMC has long been
seen as a real challenge which may explain why the Multiuser
case is so sparse in the AMC literature (cf. Section III).

Thereby, very few MAMC methods were proposed, whether
it was considered in the single-node or in the distributed multi-
node contexts3. The latter would be preferred in interconnected
networks provided for the purpose and in the military domain,
where the data exchange between the nodes is not an issue.
However, in the context of CR, the savings in terms of
overhead would be mitigated by the consequent signaling
between the nodes, needed to fusion the collected information.
This fact has motivated the study of MAMC techniques in the
terrestrial cognitive single-node context. To the best of our
knowledge, Spooner was the first to propose an algorithm for
MAMC in the single-node scenario, in 1996 [10]. Since then,
it seems that no efficient and practically feasible algorithm has
been proposed in the literature to face the blind single-node
MAMC issue, which is precisely our goal.

Throughout this article, we actually are interested in the
blind MAMC of asynchronously mixed co-channel signals
received by a single antenna. More precisely, we are prone
to consider the (almost-)totally spectral overlapping scenario.
This case study is of real interest for three main reasons. First,
the (almost-)totally overlapping scenario would appear in the
context of Cognitive Satellite where time and frequency are
slotted for an easier management of the resource. Secondly,
the asynchronous assumptions can not be relaxed since perfect
time/frequency alignment between the overlapping signals is
generally not reachable. Finally, the considered scenario is a
major issue in the field of MAMC: it actually seems that no
proposed signal processing method is currently able to face it.

1By “classical”, we include all the AMC methods that are designed for a
single signal corrupted by noise. Thereby, it is assumed that no interferer is
spectrally overlapping with this signal whatsoever.

2The terminology “Multiuser AMC” (MAMC) was first proposed in 2012
by Zaerin et al., in [9]. MAMC refers to the AMC methods that are designed
to face partial or total spectral overlapping of two or more signals.

3“Single-node” and “multi-node” refer to the number of terrestrial stations
that are assumed to receive and process the mixture. In the satellite context, a
“node” is composed of a single antenna since no spatial diversity is available.
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The MAMC algorithm we propose in this article relies on an
Analytical study of the M th-Power Nonlinear Transformation
(AMPT) [11]. As further discussed, this transform is chosen
for its ability to blindly recognize the constellations of the co-
channel signals at a small computational expense and with a
good robustness against the unknown parameters. The whole
method is classically structured around a two step architec-
ture compounded of a preprocessing unit and a recognition
algorithm, as depicted in Fig. 1.

x(n)
Preprocessing

Unit
Feature

Computation
Decision

Algorithm Ĉy(n)

π̂
Recognition Algorithm

Automatic Modulation Classifier

Fig. 1. The common Feature-Based AMC architecture

The paper is organized as follows: In Section II, we describe
the considered scenarios and formulate the working hypothe-
sis. In Section III a brief review of (M)AMC methods is un-
folded, while in Sections IV to VII, we develop the underlying
theory of AMPT for AMC and MAMC. In Section VIII, the
proposed AMPT-based algorithms in the co-channel context
are detailed. Finally, the performance of the proposed methods
is studied via extensive simulations throughout Section IX.

II. PROBLEM STATEMENT

Thereby, we describe the scenarios entailing asynchronous
co-channel interference of satellite signals, and we illustrate
them with specific case-studies. Then, we derive the associated
mathematical model and assumptions in the blind context.

A. System model and interference scenarios

Small satellite dishes (such as the one used in VSATs) are
increasingly considered at the end users for their cost and
space requirement. Due to their non-directivity, they willingly
allow multi-satellite communications, but they also inherently
induce unwanted interference at both the forward and the
reverse links [12]. Thereby, we consider Geostationary (GEO)
bent-pipe satellites used for Fixed Satellite Services (FSS).

1) Scenario A – Interference at the end user (Forward link):
We may consider the scenario induced by the transmission
of multiple gateways through closely located satellites. In-
terference occurs when their footprints and frequency plan
overlap at the downlink (Fig. 2). It equivalently happens
with a multibeam satellite when the frequency reuse policy
is aggressive [13].

Sat. 1 Sat. 2

Gateway 1

Gateway 2

VSAT

Downlink interference area

Fig. 2. Forward link interference at the VSAT due to overlapping footprints

2) Scenario B – Interference at one or more satellites
from multiple VSATs (Reverse link): In the Cognitive Satellite
context, multiple VSATs may jointly communicate with a
primary and a secondary satellites. When these VSATs are
all located in the same footprint, they may interfere at the
uplink as shown in Fig. 3.

InterferencePri. Sat.
Sec. Sat.

Pri. Gateway

Sec. Gateway

Fig. 3. Reverse link interference at the satellites from multiple VSATs

3) Case-studies for Scenarios A and B in the literature:
Scenario A captures the case of coexistent multibeam GEO
satellites in Ka band, as shown in [5] and [6]. In these articles,
it is proposed to mitigate co-channel interference via coordi-
nation between the gateways. This assumption is in practice
very restrictive and then we relax it in the present work.

Scenario B accurately models the interference produced by
cognitive SatComs at the reverse link, as shown in scenarios D
and E of the CoRaSat approach [14]. Thereby, some portions
of the C and Ku bands are used on a primary basis by FSS.
Non-directive terminals may produce significant interference
due to their opportunistic link with a secondary satellite.

B. Mathematical model of the involved co-channel mixture

We derive the expression of the mixture at the VSAT for
the forward link (Scenario A). The derivation for Scenario
B is similar and leads to an analogous model with the same
mathematical structure. First, the uplink signal at gateway u
is expressed in baseband as

xu(t) =
∑
k∈Z

su(k) · hu(t− kTu), (1)

where su is the i.i.d. symbol stream carried by constellation
Cu∈C, hu the pulse-shaping function and Tu the symbol time.

The physical link between each gateway u and the VSAT
receiver (including the uplink, the bent-pipe satellite and the
downlink) is classically modeled for fixed satellite systems as
a delayed single-path channel hpu(t) such that

hpu(t) = au · ei(2πfut+φu) · δ(t− τu), (2)

where au is the amplitude, fu the carrier frequency at the
downlink, φu the initial phase and τu the delay. You may
refer to Section II.C for the detailed assumptions related to
the aforementioned parameters.

Denoting x(t) = [x1, · · · , xU ] and hp
u(t) = [hp1, · · · , h

p
U ]T

with U the number of signals sharing the same band, we get
at the receiver the following co-channel mixture of signals:

x(t) = x(t) · hp
u(t) + ν(t), (3)

where ν(t) stands for Additive White Gaussian Noise
(AWGN) with unknown variance σ2

ν .
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At the receiver, signal x(t) is sampled (to output x(n)) and
blindly preprocessed (to output y(n)), as described in Fig. 1.
The latter task includes a translation to pseudo base-band –
i.e. the resultant Power Spectral Density (PSD) is located at a
frequency fry which is close to zero – and a normalization step
– as the one proposed in [11] – so that the noise-free mixture
has unit power. A low-pass pre-filter is also considered for a
better rejection of adjacent channels and out-of-band noise.

The discrete time samples y(n) obtained at the output of
the preprocessing unit are then equivalently given by

y(n) =

U∑
u=1

yu(n) + ν(n), (4)

where, yu(n) corresponds to the uth signal component:

yu(n) = au·ei(2πfrun+φu)
∑
k∈Z

su(k)hu (nTe−kTu−τu), (5)

where Te denotes the sampling period and fru the residual
Carrier Frequency Offset (CFO) for signal u. Thereby, we
classically consider that hu are Root Raised Cosine (RRC)
filters with unknown Roll-Off factor βu.

C. Assumptions on the parameters in the realistic context

The satellite channels, in addition to the absence of syn-
chronization at the gateways and satellites, inherently produce
impairments between the downlink signals at the receiver.

1) Effects induced by the Local Oscillators (LO): The LO
have an impact on carrier frequency and symbol time. In
fact, denoting εu the summed LO imprecisions of link u, the
received carrier frequency at the VSAT is fu = (1 + εu) · fc,
with fc the target downlink carrier frequency. In the same way,
we have Tu = (1 + εu) · T , with T the target symbol rhythm.

Considering a standard value of around 0.1 ppm for εu [15],
a bandwidth B of the order of the MHz and the use of C, Ku
or Ka band lead to the following mathematical properties:
• For all u, Tu is considered to all be almost equal T .
• For all u, the CFO fru is small compared to T such that

the “almost-overlapping” scenario holds. Without loss of
generality (wlog), we assume in this work that the fru
are all different, even slightly, with probability one.

A graphical representation of these effects is shown in Fig.
4 for a mixture of 3 signals. The CFOs have been voluntarily
overstated for a better readability. The dashed line represent
the shape of the low-pass pre-filter in the preprocessing unit.
Last, Pu stands for the power of signal u and Py for the
summed power in band B, so that Py − Pν = 1.

𝑓
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Fig. 4. Representation of the PSDs of the co-channel signals

At the receiver, we assume that a proper algorithm, such as
the one in [16], estimates T . The residual CFOs are assumed
as unknown: they are estimated by the proposed MPT method.

2) Other assumptions on signal yu: In (5), we assume that
φu and τu are uniformly distributed, respectively in [0; 2π[ and
[0;T [, and unknown. Note that unlike several AMC methods,
we do not assume that Te = T (i.e. we do not perform any time
synchronization at the receiver, which would be impractical
in the interfering context). Instead, we assume that y(n) is
properly oversampled by a factor ρ = T/Te which respects
Shannon’s sampling theorem, i.e. T−1e ≥ B.

3) Assumptions related to su and C: Symbol sets su are in-
dependent and identically distributed, and respectively carried
by constellations Cu ∈ C. The Cu may all be different. All the
Cu are zero mean, unit variance and unknown. Set C, however,
is assumed to be known. As depicted in Fig. 5, we consider
PSK, QAM and “hybrid” constellations for the sake of a
sufficient diversity. Moreover, these constellations are typically
used in SatComs (see e.g., IESS-310 and ETSI EN 301 210).
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8AMPM R8QAM 16QAM

Fig. 5. Representation of the considered constellations in the complex plan

D. Overview of the assumptions
Table I sums up the assumptions proposed in the current

Section as well as the blind aspects of the proposed method.
Note that “Estimated with AMPT” means that we propose
in this article an algorithm to blindly estimate the considered
parameter. “∗” means that no particular assumption is taken.

TABLE I
ASSUMPTIONS AND BLINDNESS OF THE PROPOSED METHOD

Para. Assumption Blind aspects

U U ≥ 0 Unknown, estimated with AMPT

Tu Tu ≈ T Unknown, estimated with [16]

τu * Unknown

fru fru 6= pairwise, << T−1 Unknown, estimated with AMPT

φu * Unknown

su i.i.d. symbol sets Unknown

Cu Cu ∈ C C is assumed to be known

au * Unknown, estimated with AMPT

hu pulse-shaping function Known (down to the roll-off factor)

ν AWGN Unknown σ2
ν , estimated with [11]

y Norm. and oversampled Blind normalization as in [11]
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III. AMC AND MAMC: A PRACTICAL REVIEW

In this Section, we unfold a brief review of the general
methods used in the literature for AMC and MAMC.

A. A brief review of AMC methods in the single-signal case

For the sake of a better understanding, it seems crucial
to quickly draw a hierarchical inventory of classically used
AMC algorithms in the single-signal case before outlining the
formerly proposed MAMC methods.

Classically, the first step is to demodulate – e.g., normalize,
filter and synchronize in time and/or frequency – the received
signal. Then, a Likelihood-Based (LB) or a Feature-Based
(FB) recognizer performs the constellation classification [17].
While LB algorithms are optimal in the likelihood sense – they
use exact or approximated Likelihood Ratio Tests (LRT) as a
decision criterion – FB methods are generally preferred for
their robustness to model mismatch and their close-to-optimal
performance at a lower computational complexity [18].

In the blind scenario, the performance of the whole AMC
method relies on both the quality of the preprocessing step –
which may be intricate in the blind context – and on the ability
of the features to discriminate the constellations of a given set
(Fig. 1). Several features have been proposed in the literature
to classify both analog and digital modulations [18], such as
Higher-Order Moments (HOM) and Higher-Order Cumulants
(HOC) [19]. However, these features are very sensitive to time
and frequency synchronizations: in the blind scenario, any
estimation inaccuracy would lead to a substantial loss in the
performance of the whole classifier. Mainly to improve the
robustness against the unknown in the blind scenario, Cyclic
Moments (CM), Cyclic Cumulants (CC) [20] and spectral non-
linearities of the signal [11] were exploited as strong features
for the blind classification of digital modulations.

B. Proposed MAMC methods in the co-channel context

Some of the features listed in Subsection III.A were also
studied in the context of spectral overlapping communication
signals in the single-node context (i.e. with a single antenna).

Spooner proposed a Minimum Distance (MD) classifier
based on Cyclic Cumulants [10] [21] [22] as a solution to the
MAMC issue. Thereby, the features used for the classifica-
tion are chosen by puncturing the two-dimensional nth-order
Cyclic Temporal Cumulant Function (CTCF) at some specific
frequencies and cyclic-frequencies for different values of n.
The method aims at being blind and only requires the knowl-
edge of a few parameters. It mostly uses the signal bandwidth
and the pulse-shaping filter characteristics as discriminants:
thus, it may not be directly applicable in the present case study.

Zaerin et al. proposed a second approach to tackle the
single-antenna MAMC issue [9]. It relies on a MD classifica-
tion based on some ratios of classical Higher Order Cumulants
(HOCs). While this approach shows a very low complexity, its
performance would quickly degrade in the blind scenario with
realistic impairments: actually, it is assumed in [9] a perfect
knowledge of all the parameters involved in the mixture.
Moreover, the method performs well only if the residual fru,
delays τu and phases φu are null which does not hold in
practice. This method does not meet our constraints either.

C. AMPT: a natural choice for efficient MAMC
We finally justify the use of Analytical Mth-Power nonlinear

Transformation for MAMC in the blind co-channel context.
Note that the assumptions related to timing and frequency

imply that we are operating in one of the most challenging
MAMC case study. In fact, if the Tu were different, CM/CC
based methods would work successfully, as in [10]. In the case
of partially overlapping signals – i.e. when the residual CFOs
are of the order the symbol rhythm – filter-bank may be use
to separate the interferers before the AMC step [9]. However,
to the best of our knowledge, the realistic scenario proposed
in Section II has never been specifically carried out.

1) A strong relation with Cyclostationarity-based methods:
Cyclic Moments (CM) and Cyclic Cumulants (CC) seem
the most promising in the blind multiuser context for their
robustness to Carrier Frequency Offsets (CFO), Phase Offsets
and Time Offsets [18] that inherently exist in the mixture. As
a consequence, no intricate demodulation step is needed and
the AMC is almost directly performed on the received signal.

The Cyclic Moment of y is especially defined as

Rαy (τ )n,q =

∫ ∞
−∞

n∏
i=1

y(∗)i(t+ τi)e
−i2παtdt (6)

where n is the order and (∗)i represents the q conjugations.
In the literature, nth-order/q-conjugated CMs with q = n/2

are classically used to generate features which are for instance
robust to phase noise [23]. With such a transform, a strong
spectral line appears at each multiple of the cyclic-frequency.

In the presence of multiple co-channel signals, it is manda-
tory to choose q 6= n/2 so that the features will not overlap
in the cyclic spectral space. As further defined in Section IV,
the MPT of y may be seen as a derivative of the CM of y
with n = M , q = 0 and τ = 0.

2) MPT-based AMC in the literature: The use of MPT
for “classical” AMC was first proposed in [24] and recently
applied in the Compressed Sensing context [25]. An improved
version was also studied in [11] to distinguish between PSK,
QAM and “hybrid” constellations. Thereby, it was proposed to
base the recognition on the theoretical power of the generated
spectral lines – through a method called AMPT – and not
only on their cardinality. In fact, the fusion of these features
for several M proved to provide stronger statistics for the
classification. In the present work, we generalize the AMPT-
based AMC to co-channel mixtures: the further theoretical
developments lead us to a practical blind MAMC algorithm.

3) A moderate complexity: Since MAMC shows a practical
interest in embedded Smart Modems, the complexity matters.
MPT-based MAMC relies on the computation of a few PSDs,
which complexity is of the order of the FFT. The complexity of
the other processing blocs is mainly due to numerical methods
on scalars (Section XIII) and they are in practice negligible.

Compared to the existing literature, the proposed method
is slightly less complex than the Cyclic-Cumulants-based
MAMC in [10]. However, AMPT-based method is more
complex than [9] (relying on Classical Cumulants which are
low-complexity) but as seen the blind performance results
(Section IX), the trade-off is clearly in favor of our method.
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IV. BASICS ON M th-POWER NONLINEAR TRANSFORM

In the scope of this article, we define the M th-Power
Transform of y, denoted as MPTy(f), as the M th-root of
the Power Spectral Density (PSD) of yM (t). Then we have

MPTy(f) ,
∣∣F (yM (t)

)
(f)
∣∣ 2
M , (7)

where F(·)(f) stands for the classical Fourier Transform (FT).
As we will further see, the M th-root is not necessarily

required, but it nonetheless allows the power of the extracted
features to be comparable when several values of M are
used. Then, the M th-root is preferred for a better fusion of
the features in the Minimum Distance (MD) sense. However,
in the case of a hierarchical tree-based classification, the
M th-root is not needed since the features are compared with
precomputed thresholds instead of with one another.

Also remark that the discrete-time model has to be consid-
ered in practice: the MPT of y(n) – where n is the time index
– is practically performed thanks to the classical Discrete-Time
Fourier Transform (DTFT). Then, as exposed in [11], the MPT
is computed from discrete-time signal y(n) according to

MPTy(f) = Ne
− 2
M ·

∣∣∣∣∣
Ne−1∑
n=0

yM (n) · e−2iπnf/Ne
∣∣∣∣∣

2
M

, (8)

where we recall that Ne stands for the number of samples.
In the next Section, we derive the analytical expression of

the power and position of the spectral lines occurring in the
MPT function in the single-signal scenario. These results are
then extended to the co-channel interference context – i.e. for
U > 1 (almost)-totally overlapping signals – in Section VI.

V. SPECTRAL LINES IN THE SINGLE-SIGNAL CONTEXT

In this section, we derive the theoretical power of the
spectral lines generated by the MPT functions (7) with a
single-signal (i.e. when U = 1). These powers – jointly taken
with their respective spectral positions – represent the features
that are further exploited to classify the incoming constellation.

A. Theoretical power of the spectral lines
We assume that y(t) is a continuous noise-free infinite-

length signal, whose discretized version is given by (4). For
the sake of coherence with Section VI, we keep index u in
the following notation so that yu(t) = y(t).

The MPT function is not affected by residual phases and
delays as proposed in [25]. For conciseness, these parameters
are both set to 0 without any loss of generality. It is obvious
that residual CFO fru shifts the spectral line by M ·fru, while
amplitude au multiplies its power by a2u. For ease of notation,
we set fru to 0 and au to 1 in what directly follows.

First, we develop the general literal expression of continuous
time signal yu(t) raised to power M (please refer to Appendix
A for further justification of these results). Starting with

yMu (t) =

(∑
k∈Z

su(k) · hu (t− k · T )

)M
, (9)

and following the work in [16], yMu (t) is fully written as

yMu (t) =
∑
i∈IM

(
M
i

)
yu,i(t), (10)

where, in (10), the following notation was adopted:

IM =

{
i ∈ ZM ,

M∑
j=1

ij =M, ik=0 =⇒ ∀k′ ≥ k, ik′ =0

}
, (11)

(
M
i

)
,

M !∏M
j=1(ij !)

, (12)

yu,i(t) =
∑

k∈Ki
M

M∏
j=1

siju (kj) · hiju (t− kj · T ) , (13)

and where, in (13), we have

Ki
M =

{
k ∈ ZM ,

[
kj=0 if ij=0

i<j =⇒ ki<kj else

]}
. (14)

In (10), some terms in the right-hand side sum are such
that E [yu,i(t)] 6= 0. The presence of a spectral line at each
frequency which is a multiple of the symbol rhythm is made
obvious according to the Poisson Summation Formula, since

E [yu,i(t)] =
1

T

∑
k∈K0i

M

µi
u,k

∑
m∈RZ

ei·mt ·H i
u,k (m) , (15)

where we denoted

K0i
M =

{
k ∈ Ki

M s.t. k1 = 0
}
, (16)

µi
u,k = E

 M∏
j=1

siju (kj)

 , (17)

H i
u,k(f) = F

 M∏
j=1

hiju (t− kj · T )

 . (18)

From (7), (10) and (15), we deduce the analytical power of
the spectral line generated by MPTyu around null frequency.
We denote this power λu,M , whose analytical expression is

λu,M =

∣∣∣∣∣∣ 1

T

∑
i∈IM

(
M
i

)
·
∑

k∈K0i
M

µi
u,k ·H i

u,k(0)

∣∣∣∣∣∣
2
M

(19)

As we can see, several terms participate to the theoretical
power of this spectral line. In fact, for a given M and for a
transmitted constellation Cu, some specific couples of vectors
(i,k) are such that neither µi

u,k nor H i
u,k(0) is null.

Theoretical expression of µi
u,k can be obtained from the

ith-order moment µ(i)
u of the emitted constellation Cu under

the i.i.d. hypothesis for the source symbols. We actually have

µi
u,k =

M∏
j=1

E
[
siju (kj)

]
=

M∏
j=1

µ(ij)
u = µi

u. (20)

Some values of µ
(i)
u are tabulated in Table II for the

constellations considered thereby. For odd values of M , the
moments are all null and they have been willingly removed.

Meanwhile, obtaining an analytical expression for H i
u,k(0)

is quite tedious for the pulse-shaping functions classically
considered – such as the root-raised cosine filter used thereby.
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TABLE II
THEORETICAL ith-ORDER MOMENTS µ

(i)
u FOR Cu ∈ C

Mod.→ BPSK QPSK 8PSK 8AMPM R8QAM 16QAM

µ
(2)
u 1 0 0 − 1

5
2
3

0

µ
(4)
u 1 1 0 17

25
1
3

− 17
25

µ
(6)
u 1 0 0 − 241

125
− 22

27
0

µ
(8)
u 1 1 1 1377

625
− 263

81
1377
625

In practice, for a given radio standard, we would numerically
compute H i

u,k(0) and store it for different sets of parameters.
As an example and in order to illustrate the behaviour of

(19), we develop in the next two subsections the simplified
expression of λu,M for M = 2 and M = 4.

B. Simplified expression of λu,M for M = 2

As previously proposed, y2u(t) easily splits into two sums:

y2u(t) = yu,20(t) + 2 · yu,11(t), (21)

where{
yu,20(t) =

∑
k1
s2u(k1) · h2u (t− k1T )

yu,11(t) =
∑
k1<k2

su(k1)su(k2)·hu(t− k1T )hu(t− k2T )

Term yu,20(t) may show a spectral line if E
[
s2u
]
6= 0,

which is true for non-π/2-rotation-invariant constellations
such as BPSK or R8QAM. However, with i.i.d. symbols,
E[su(k1)su(k2)] = 0 whatever Cu and no spectral line occurs.

If we consider that hu is a square-root raised cosine filter
and whatever the roll-off βu, we eventually get H20

u,0(0) = T .
Then, in this context, the analytical expression of λu,2 is

λu,2 =

∣∣∣∣∣ 1

T
·

(
µ(2)
u · T + 0 ·

∑
k>0

H11
u,0k(0)

)∣∣∣∣∣ =
∣∣∣µ(2)
u

∣∣∣ . (22)

C. Simplified expression of λu,M for M = 4

Likewise, the theoretical expression of λu,4 is drawn in the
same context. Now, several terms in the development of y4u
contribute to the power of the spectral line. Herein, we get

y4u = yu,4000+16yu,3100+6yu,2200+36yu,2110+24yu,1111. (23)

Among the right-hand side terms in (23), only yu,4000 and
yu,2200 may show a non-null expectation and contribute to the
power of the spectral line. Meanwhile, terms yu,3100, yu,2110
and yu,1111 show null expectations: they have no effect on the
power of the spectral line whatever the constellation.

The development of theoretical λu,4 according to (19) is a
bit more tedious than for M = 2 but follows the exact same
principle. We eventually get after some simplifications

λu,4 =

∣∣∣∣∣ 1

T

(
µ(4)
u H4000

u,0 (0)+6
(
µ(2)
u

)2∑
k>0

H2200
u,0k00(0)

)∣∣∣∣∣
1
2

. (24)

No simple analytical formulas were found neither for
H4000
u,0 (0) nor for H2200

u,0k00(0) in the situation where hu is a
square-root raised cosine (SRRC) filter. Anyway, these values
are numerically computable and they can be tabulated to
further reduce the complexity of the classification algorithm.

VI. SPECTRAL LINES IN THE CO-CHANNEL CONTEXT

We now consider the co-channel interference scenario: to
this end, we adopt the assumptions proposed in Section II. To
develop the analytical expression of the power and position
of the spectral lines, we first consider that the mixture is
composed of U continuous-time and free of noise signals.

A. Preliminary considerations
By expanding the M th-power of the received mixture of U

signals according to the multinomial theorem, we get

yM (t) =
∑

m∈MM
U

(
M
m

) U∏
u=1

ymuu (t), (25)

where m = (m1, · · ·,mU ), where the multinomial coefficients
are classically developed as in section V as(

M
m

)
,

M !∏U
u=1mu!

, (26)

and where MM
U denotes the following set:

MM
U =

{
m = (m1, · · · ,mU ) ∈ NU ,

U∑
u=1

mu = M

}
. (27)

B. Cardinality of the set of spectral lines for a given M
Some right-hand side terms of the sum in (25) may produce

a spectral line. In what follows, we derive the expression of
the subsets of MM

U prone to generate spectral lines, mainly
depending on the set of constellations {Cu}.

Let first remark that all zero-mean π-rotational symmetric
constellations don’t produce any spectral line if at least one
of the mu is odd. Thus, for usual constellations such as
the one considered in the scope of this article, the sum in
(25) is performed on the following reduced set whatever
{Cu}u∈{1,···,U}:

MM,2
U =

{
m ∈MM

U ∩ (2N)
U
}
, (28)

which can be formulated using the notation of (27) as

MM,2
U = 2 · MM/2

U . (29)

The number of terms in the sum in (25) participating to the
theoretical power of the spectral lines that may appear in the
MPT of y is the cardinality of MM/2

U . This set is known,
in combinatorics, as the set of all the M/2-multicombinations
[26]. The cardinality of this set for U ≥ 1 is expressed as

Card
(
MM/2

U

)
=

((
U
M/2

))
, (30)

where (( · )) – reads “U multichoose M/2” – is analytically
given in terms of classical combinations and for U ≥ 1 as((

U
M/2

))
=

(
U +M/2− 1

M/2

)
. (31)

We finally get the number of expected spectral lines around
the null frequency for a given {M,U} ∈ N∗2,

Card
(
MM,2

U

)
=

(U +M/2− 1)!

(U − 1)! · (M/2)!
. (32)
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Some values of Card
(
MM,2

U

)
for small values of M and

U are gathered in Table III:

TABLE III
TYPICAL VALUES OF CARD

(
MM,2

U

)
FOR SOME M AND U

M ↓ U→ 1 2 3 4 5

2 1 2 3 4 5

4 1 3 6 10 15

6 1 4 10 20 35

8 1 5 15 35 70

Note that it is still possible to refine the set given by (28)
when considering the order of the rotational symmetry of the
emitted constellations. Actually, as this order grows, some
standard moments of the constellation become null and some
spectral lines do no longer appear. Then, if we assume that Cu
is 2π/Xu-rotational symmetric – with Xu the highest possible
– then the sum in (25) is performed on reduced set

MM,X
U =

{
m ∈MM

U ∩XN
}
. (33)

The analytical formula of Card
(
MM,X

U

)
whatever X, U

and M is rather inconvenient and proves not to be crucial.
Instead, we assume that the number of spectral lines is always
given by (32) whatever the emitted constellations. However,
some spectral lines may appear with a null power.

C. Analytical power of the spectral lines
Following the previous development, it is possible to derive

the theoretical power of each term in the sum in (25). In fact,
for a given vector m, we may get (see Appendix B.)

λm =

(
M !∏U

u=1mu!
·
U∏
u=1

(
a2u · λu,mu

)mu
2

) 2
M

, (34)

where, as defined previously, λu,mu stands for the theoretical
power of the spectral line generated by ymuu if it was alone.

Formula (34) is of major interest since it shows that the
theoretical powers of the spectral lines in the interfering case
can simply be derived from the ones in the single-signal case.

D. Position of the spectral lines
Let us now consider the spectral shift entailed by the

residual carrier frequencies fru on the spectral lines. While
replacing yu in (25) by its expression, literally given by (5), it
is straightforward that the spectral line generated for a given
m simply appears at frequency fm, such that

fm =

U∑
u=1

mu · fru. (35)

Similarly to the way we normalize the power of the spectral
lines – as the M th-root of the PSD – we define the normalized
spectrum scale f ′ such that f ′ = f

M . Then, the normalized
position of the spectral line indexed by vector m is

f ′m ,
1

M

U∑
u=1

mu · fru. (36)

E. Theoretical features for a mixture of two signals

According to the previous development, we gathered in
Table IV the expected number, powers and positions of the
spectral lines for a few values of M when U = 2.

TABLE IV
PROPERTIES OF THE FEATURES FOR A MIXTURE OF 2 SIGNALS

M ↓ Peaks Norm. f ′m Theoretical Power λm

2 2 fr1, fr2 a21λ1,2, a
2
2λ2,2

4 3 fr1,
fr1+fr2

2
, fr2 a21λ1,4, a1a2

√
6λ1,2λ2,2, a22λ2,4

6 4
fr1,

2fr1+fr2
3

,
fr1+2fr2

3
, fr2

a21λ1,6,
3

√
15a41a

2
2λ

2
1,4λ2,2

3

√
15a21a

4
2λ1,2λ

2
2,4, a

2
2λ2,6

In order to verify the proposed analytical development,
we jointly represent, Fig. 6, the theoretical λm computed
according to Table IV and the MPT functions of normalized
y(n) for a few M . Thereby, a mixture of a two signals
was considered, respectively with constellations BPSK and
R8QAM, and residual CFOs of -20 Hz and +40 Hz. The
Signal-to-Interferer Ratio (SIR) of the strongest signal is 3.5
dB. The noise-free mixture was up-sampled by a factor ρ = 4
and Ne was set to 4 · 105 samples (which is high enough to
verify the “infinite-length” observation hypothesis).

Normalized Frequency (Hz)
-20 -10 0 10 20 30 40

P
ow

er

0

0.2

0.4

0.6

0.8

1

1.2
Theoretical 6

m,2

Theoretical 6
m,4

Theoretical 6
m,6

Fig. 6. Theoretical power λm and simulated MPTy(f ′)

As expected, the theoretical position f ′m and power λm of
each spectral line in the MPT matches the simulated ones.

F. Towards the noisy discrete-time finite-length model

Up to now, we considered the theoretical references ob-
tained for continuous-time, infinite-length, noise-free signals.
With noisy mixtures and small observation lengths, the power
of the spectral lines is no longer deterministic and the spectral
noise becomes quite substantial. In Section VII, we derive
the Probability Density Functions (PDFs) for both the spectral
lines and the background noise. This development aims at:
• Analytically derive the references in this realistic context.
• Get the theoretical probabilities of good detection of the

spectral lines and false alarm rate in the blind scenario.
• Compute the theoretical Correct Classification Rate

(CCR) in various AMC and MAMC scenarios.
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VII. PROBABILISTIC CONSIDERATIONS

In this Section, we consider the effects of a noisy discrete-
time finite-length model for the received signal, namely:
• The spectral background noise power impact on the

power of the spectral lines.
• The statistical behaviour of the power of both the back-

ground noise and the spectral lines.

A. Motivation and preliminaries

Mazo rightly pointed out the first effect in [16]: performing
the MPT computation on a finite-length signal inherently leads
to the integration of the background noise in a bandwidth of
size fe

Ne
around fm. The mean background noise quickly in-

creases with both M and U and decreases with the composite
SNR, which motivates to study its impact on measured λ̂m.
Mazo proposed a general framework to compute the mean
background noise power, based on the expression of the PSD
as the Fourier Transform of the autocorrelation function of y.
While this method is easy to apply for M = 2 and U = 1
– which was done by Reichert in [24] for Gaussian filters –
it becomes infeasible for higher values of M and U due to
the exponentially growing number of cross terms appearing in
the autocorrelation function of y. Besides, it does not give any
information on the distributions of the spectral power, which
is needed to unfold the analytical expression of both the good
detection and false alarm rates in the blind scenario.

Instead, we propose to draw the PDFs of the spectral power
by considering that the mean background noise power around
the spectral lines in (MPTy)M (f), denoted by ηM , is easily
estimable. Following [24], we may consider the probabilistic
distributions under two different hypothesis, namely:
• H0 – MPTy(f) belongs to the background noise
• H1 – MPTy(f) is a spectral line.

B. Distribution of the power of the background noise (H0)

It can be shown that the probabilistic behaviour of
(MPTy)M (f) under hypothesis H0 follows a centered chi-
squared distribution with two degrees of freedom – see e.g.,
[24] [27] [28]. Then, the PDF for each frequency bin around
the null frequency and under hypothesis H0 is derived as

p
[
MPTMy (f) = x|H0

]
=

1

ηM
· e−

x
ηM , (37)

where we recall that ηM stands for the mean background noise
power surrounding the spectral lines. ηM is given by

ηM =
〈
MPTMy (f)

〉
f∈BM

, (38)

where BM is such that for all f in BM , MPTy(f) shows no
spectral line and is almost identically distributed. This second
assertion is true when f is close to the null frequency. Note
that “< · >” classically stands for the mean value.

C. Distribution of the power of the spectral lines (H1)

Deriving the PDF for the spectral lines is also needed to
get the analytical expression of the references. It also allows
to get the theoretical probability of good detection of the
spectral lines and the Correct Classification Rate (CCR) of
the (M)AMC method with a Minimum Distance classifier.

The power of (MPTy)
M/2

(fm) proves to follow a Rice
distribution [24]. Equivalently, (MPTy)

M
(fm) follows a non-

central Chi-squared distribution with 2 degrees of freedom:

p
[
MPTMy (fm) = x

]
=

1

ηM
·e−

x+λMm
ηM ·I0

(
2
√
xλMm
ηM

)
, (39)

where I0(·) stands for the modified Bessel function of the first
kind with order zero. From (39), we get (see Appendix C.)

p [MPTy(fm) = x]=
MxM−1

ηM
·e−

xM+λMm
ηM ·I0

(
2
√
xMλMm
ηM

)
. (40)

D. References in the discrete-time finite-length context

Based on the above development, the references λrefm used
to compare the constellations in the Minimum Distance (MD)
sense can be analytically developed has the expected value of
the distribution of the power of the spectral line (40), yields

λrefm = M
√
ηM ·e−

λMm
ηM ·Γ

(
1+

1

M

)
·1F1

(
1+

1

M
, 1,

λMm
ηM

)
, (41)

where Γ stands for Euler’s Gamma function and pFq (a, b, x)
the p, q-order generalized hypergeometric function.

We may remark that if λMm is large compared to ηM , then
the following approximation holds:

1F1

(
1+

1

M
, 1,

λMm
ηM

)
' e

λMm
ηM

Γ
(
1 + 1

M

) · (λMm
ηM

) 1
M

. (42)

Then, λrefm ' λm. In other words, the PDF given by (40)
is almost centred around λm. In that case, it is not mandatory
to use (41) to refine the references and using the expression
given by (34) gives sufficient precision for the references.

E. Blind detection of the Spectral Lines

In the blind context, the first step is to detect the spectral
lines in the computed (MPTy)M functions. The probability
of detecting a false spectral line at a given frequency f with
threshold ξM is derived according to (37) as

PF,s,M =

∫ +∞

ξM

1

ηM
· e−

x
ηM dx = e

− ξMηM . (43)

The detection of the spectral lines can be handled on a
reduced part of the spectrum: this set is centered around 0 and
its bounds mainly depend on the maximum expected value of
the CFOs. If we assume that the maximum normalized CFO
for all the users is ±fmax, then the peak detection is performed
on nb = 2MNefmax frequency bins. Moreover, the power of
the background noise bins proves to be identically distributed
in [−fmax; fmax]\{fm} if fmax << T−1. Then, we get the
following false alarm rate in the considered bandwidth:

PF,M ' 1−
(

1− e−
ξM
ηM

)nb
. (44)

Fig. 7 shows the theoretical probability of false detection on
the whole spectrum-of-interest (44) and the simulated one for
M = {2, 4}. Here, nb was set to 50M , U to 2, ρ to 4, Ne to
4 ·104 and SNR to 10 dB. These probabilities are represented
as a function of the normalized threshold ξM/ηM .
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Fig. 7. Theoretical and simulated false alarm rates PF,2 and PF,4

From (44), we get the expression of ξM for a given PF,M :

ξM ' −ηM · ln
(

1− (1− PF,M )
1
nb

)
. (45)

Generally – mainly to get the least possible outliers and have
a simple post-processing algorithm – we choose ξM such that
PF,M is as small as possible while correctly detecting most
of the spectral lines. For a given ξM , the probability of good
detection of the spectral line occurring at frequency fm is
derived using the Cumulative Distribution Function (CDF) of
the non-central Chi-squared distribution. We may get:

PD,m = Q1

√2λMm
ηM

,

√
2ξM
ηM

 (46)

where Q1(·, ·) stands for the first-order Marcum Q-function.

VIII. BLIND MAMC BASED ON AMPT

Throughout this section, we propose to blindly solve
the inverse problem of estimating parameters U and
{fru, au, Cu}u∈{1,···,U}, given functions MPTy for some M.

A. General scheme of the proposed blind MAMC method

We first draw the block diagram of the whole method with
the references to specific equations or algorithms in Fig. 8.

B. Preprocessing Unit

As previously discussed, the preprocessing unit transforms
the incoming signal x(n) into a normalized, pseudo-centred
and pre-filtered signal y(n). For instance, this step can be
performed according to the method proposed in [11].

The preprocessing unit also estimates some parameters of
the mixture if needed, such as the oversampling factor ρ.

C. Detection of the spectral lines in the MPTs

The decision starts with the detection of the spectral lines
in the computed MPTs. As stated in Section VII, proper
threshold ξM has to be chosen to find a compromise between
the good detection rate and the false-alarm rate. We propose –
with Algorithm 1. – to detect the spectral lines with a chosen
false-alarm rate PF,M . The spectral lines are then sorted by
decreasing Peak-to-Background Noise Ratio (PBNR).

x(n)

Blind preprocesssing (VIII. B.) Blind estimation (VIII. B.)

Compute MPTy (8)

Detect Spectral LinesCompute ηM (38)

Detect Û and f̂ru (Algo. 2)

Extract λ̂m from MPTy

Comp. f̂m, m ∈MM
U (35)

Comp. λm, m ∈MM
U (34)

Solve Opt. Problem (47)

λMm >> ηM

λrefm = λm λrefm = (41)

{au, Cu}

Yes No

Preprocessing Unit

Blind detection of the Spectral Lines (Algorithm 1)

FeaturesReferences

y(n)

π̂

Fig. 8. The proposed AMPT-based blind MAMC algorithm

Algorithm 1 Constant false-alarm rate detector for set {M}
1: For each M , compute the MPTMy (f) with function (8)
2: For each M , compute ηM (38)
3: For each M , set ξM for a chosen PF,M (45)
4: Detect the spectral lines, sort them by decreasing PBNR

D. Computation of the features λ̂m
Thereby, we develop the method to compute the features

λ̂M for some M . This task is not an issue when the number
of users U and the residual carrier frequencies fru are known.
In this situation, we simply compute the powers given by (8)
for each fm (35) such that m is in MM,2

U (28).
In the blind scenario, U and the residual CFOs fru are not

known. Then, we have to estimate them to correctly run the
computation of the features.

To proceed, we propose an algorithm which iteratively
builds a basis {f̂ru} and estimate Û based on the set of
detected spectral lines. We first work on the spectral lines that
show high PBNRs to make the construction robust to outliers
and to forgotten spectral line.

On overview of the method is proposed in Algorithm 2.
We denote by nSL the number of spectral lines detected
with Algorithm 1. The nth spectral line is represented by its
frequency fn and the order Mn of the MPT. Fn represents
the frequency basis obtained with the n first spectral lines.

Algorithm 2 Estimation of Û and {f̂ru} by decreasing PBNR

1: Initialize F0 = ∅ and Û = 0
2: for n = 1 : nSL do
3: if fn is not a linear combination of Fn−1 (35) then
4: Û ← Û + 1
5: Fn−1 ← Fn−1 ∪ fn
6: Find Fn by orthogonalizing Fn−1
7: end if
8: end for
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At the end of the algorithm, we get the estimated number
of users Û and a basis FnSL – also denoted as (f̂1, · · · , f̂Û ) –
that describes the positions of the detected spectral lines. The
computation of λ̂m is straightforward using (8) and (35).

E. Computation of the references λrefm

Analytical expressions of the references may be obtained
according to (19) and (34), and refined according to (41)
if needed. Note that for small values of M and U and for
medium to high SNRs, computing the references using (34)
gives sufficient precision and greatly simplifies the algorithm
in charge of estimating {au} and {Cu}.

F. Finding {au} and {Cu} by solving an optimization problem

In the blind scenario, sets {au} and {Cu}, for all u
in {1, · · ·, U} are unknown. Our goal is to estimate these
parameters in the Minimum Distance (MD) sense.

1) Problem statement: We assume that the λ̂m have been
correctly computed for all m ∈ MM,2

U . Then, in the MD
sense, we look for set {âu, Ĉu} such that

{âu, Ĉu} = arg min
{au,Cu}

s.t.
{
a21+···+a

2
U=1

(C1,··· ,CU )∈CU

∑
M

m∈MM,2
U

(
λ̂m − λrefm

)2
, (47)

where we recall that λrefm stands for the references, computed
according to (34) and refined with (41) if assumed necessary.

2) Splitting the optimization problem: Solving (47) is per-
formed by splitting the optimization problem: for each possible
set {Cu} ∈ CU , we first find {âu} such that

{âu} = arg min
{au},||a||22=1

∑
M

m∈MM
U

(λ̂m − λrefm )2 (48)

Then, the set of constellations {Ĉu} is the one which min-
imizes (47) according to the respective estimated sets of
amplitudes {âu}.

G. Specific case study: U = 2 with the 2/4PT classifier

Among the co-channel scenarios, the situation where two
signals coexist is encountered in several contexts such as in
dual-satellite systems. This scenario was studied by Zaerin et
al. in [9] with simplifying assumptions. In Section IX, we
mainly study the performance of our method in this specific
context and we confront it with Zaerin’s method.

Then, with two co-channel signals inferred by a 2PT/4PT
classifier and under the approximation λrefm ' λm, the
following multivariate polynomial P has to be minimized

P(a1, a2) =
(
λ̂20−a21λ1,2

)2
+
(
λ̂02−a22λ2,2

)2
+(

λ̂40−a21λ1,4
)2
+
(
λ̂22−a1a2

√
6λ1,2λ2,2

)2
+
(
λ̂04−a22λ2,4

)2 (49)

This problem is easily solved by neglecting the effects of
the cross term – i.e. the fourth right hand side term in (49)
– on the solution {â1; â2} which minimizes (49). This last
approximation leads to an analytical formula for {â1; â2}.

IX. SIMULATION RESULTS

In this penultimate Section, we show the effectiveness of the
proposed method throughout numerical simulations in various
scenarios. To this end, this Section is split into three main
subsections. The first part deals with the good detection rate
of the number of signals and their respective CFOs, which
is a crucial step in the blind scenario. Then, we expose
some results in the dual-signals blind context through the
Correct Classification Rate obtained with the proposed 2PT-
4PT classifier. Last, the performance of the proposed method
are compared with the one obtained with Zaerin’s method [9].

Otherwise stated, we consider that all the assumptions
proposed in Section II hold. All the mixed sources are pulse-
shaped by Square-Root Raised Cosine (SRRC) filters with
roll-off 0.25. We consider that the adjacent channels and
the Gaussian noise that lay outside band B are perfectly
rejected by a proper bandpass filter. The oversampling factor
ρ is arbitrarily set to 4. The baud-rate R is set to 1e6

symbols per second for all the sources. The residual CFOs
are randomly and uniformly chosen in band [−1; +1] kHz.
Moreover, we use the classical definitions of the composite
SNR: SNRdB = 10 · log10(

∑U
u=1 Pu
Pν

), where Pu stands for the
power of signal u and Pν for the power of the noise.

A. Detection of the number of signals and the residual CFOs

We first consider the problem of detecting the number of
signals U in the considered bandwidth as well as the respective
residual CFOs of these signals. The good detection of these
parameters is in fact mandatory for the classification algorithm
to properly work. We have to mention that when U is correctly
estimated, then the estimated residual CFOs are also correct.

Fig. 9 shows the Correct Detection Rate (CDR) of the
number of users versus the composite SNR when the users
transmit BPSK constellations with same powers. To this end,
we use both 2PT and 4PT and we jointly run Algorithm 1
for the detection of the spectral lines, and Algorithm 2 for the
estimation of U and {fru}. Thereby, 2e3 symbols were used
for the detection, and the ratio ξM/ηM was set to 10 so that
the overall false alarm rate – i.e. in both 2PT/4PT – is 0.5%.
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Fig. 9. Correct Detection Rate of the number U of overlapping BPSK signals
as a function of the composite SNR, for U ∈ {0, 1, 2, 3}



11

B. 2PT/4PT-based blind MAMC with two co-channel signals

Thereby, we expose the performance of the whole proposed
MPT-based MAMC for mixtures of two signals. Set C is
composed of constellations BPSK, QPSK, 8AMPM, R8QAM
and 16QAM for sufficient diversity in terms of SatComs.

First, Fig. 10 shows the Correct Classification Rate (CCR)
arbitrarily for signal 1 when the Signal-to-Interferer Ratio
(SIR) of both signals is equal to 0 dB. This scenario can be
seen as a “worst case” in MAMC, as stated in [9].
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Fig. 10. Correct Classification Rate (CCR) for user 1 in the context of two
overlapping signals – SIR = 0 dB – Blind scenario – N = 1e4

In Table V, we also expose the confusion matrix of the
classifier in the same context as in Fig. 10 with SNR = 10 dB.
Note that “0%” was replaced by “ · ” for a better readability.

Emitted Constellation

BPSK QPSK 8AMPM R8QAM 16QAM

C
la

ss
ifi

er
O

ut
pu

t BPSK 100% . . . .

QPSK . 92.8% 0.6% . 17.4%

8AMPM . 1.8% 97.1% . 4.5%

R8QAM . . . 100% .

16QAM . 5.4% 2.3% . 78.1%

TABLE V
CONFUSION MATRIX WITH SNR = 10dB FOR THE PROPOSED 5-CLASS

PROBLEM – SIR = 0 DB – BLIND SCENARIO – N = 1E4

As expected, the worst CCR is for both QPSK and 16QAM
constellations since they are the closest in the 2PT/4PT
feature-space. Meanwhile, the CCR for other types of con-
stellation is satisfying even at low SNRs.

Last, Fig. 11 shows the mean CCR for both signals in the
average realistic scenario, i.e. in the blind context and with a
SIR randomly chosen in set [0; 6] dB (signal 1 is assumed
to be the strongest wlog). Other parameters are randomly
chosen as previously stated. The mean performance is slightly
better for BPSK, 8AMPM and R8QAM constellations, while
an expected degradation of the CCR for QPSK and 16QAM
is encountered. If considering a channel coded transmission
with usual code rate, the CCR obtained at the minimum SNR
allowing proper multiuser demodulation is truly acceptable.
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Fig. 11. Correct Classification Rate (CCR) for both signals in the context of
two overlapping signals – SIR ∈ [0; 6] dB – Blind scenario – N = 1e4

C. Comparison with Zaerin’s MAMC method [9]

In this penultimate part, we propose to compare the MAMC
method proposed in [9] with our 2PT/4PT-based classifier.

1) Preamble: Note that the method in [9] is the closest to
the one we propose thereby. However, it is not designed for
the blind situation and several strong assumptions are taken in
the co-channel case. Especially, it is assumed that the signal is
perfectly sampled at the symbol rhythm, which doesn’t hold
in practice. Moreover, the method is designed for rectangular
pulse-shaping, for null CFO and with a perfect synchronisation
between the interfering signals. Any offset, no matter how
small, entails consequent degradations in the CCR. Instead,
the method we propose is designed to handle these offsets
and no degradation of the CCR is noticed.

To remain fair, we propose to compare both methods in the
non-blind situation with no phase offset and no delay between
the signals. However, we assume non-null residual CFOs when
simulating both methods. We assume perfect synchronization
for [9] while the over-sampling factor is set to 4 for the
proposed AMPT-based method. Rectangular pulse-shaping is
assumed for [9] while we use SRRC filters with roll-off 0.25
for the proposed AMPT-based method.

2) Simulation results: Fig. 12 shows the Correct Classifica-
tion Rate (CCR) of both methods for a mixture of two signals
when C = {BPSK, QPSK, 16QAM} and N = 8000.
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Fig. 12. Mean Correct Classification Rate for AMPT-based method and [9]
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The proposed AMPT-based method clearly outperforms the
method in [9], even in the context of perfectly synchronized
signals. Moreover, note that the performance of the MAMC
method in [9] would significantly drop with delays between
the users or when the amplitudes of the signals are different.

X. CONCLUSION

We have proposed a new method for the blind modulation
classification of co-channel overlapping signals in the cogni-
tive satellite context. It is based on an Analytical study of the
M th-Power nonlinear Transformation (AMPT) of the mixture.

This method shows two main advantages. First, it makes
no assumption regarding time and frequency synchronization
at the receiver. Thus, no intricate demodulation scheme is
needed and the constellation recognition is performed in a
blind manner almost directly on the received signal. Secondly,
its complexity is of the order of the Fourier Transform, which
makes the whole algorithm feasible in cognitive receivers.

We showed that AMPT-based MD-sense classification was
able de distinguish between several constellations even if
they are very close to each other in the feature sense. The
theoretical mathematical background was proposed and it can
be easily extended to other type of signals as long as they
show non-linearities when raised to some power M .

Further work should be carried out regarding the use of
other non-linear transformations that may be better adapted to
the set of constellations we want to classify. Also, the study
of advanced MAMC methods based on AMPT should be
regarded, especially in the situation where the physical channel
is not a simple impaired AWGN channel. This scenario would
be relevant for cognitive satellite terrestrial radio (CSTR), land
mobile SatComs or for terrestrial cellular networks.

APPENDIX A
JUSTIFICATION OF SECTION V.

Denote xu(k) = su(k) · hu(t − k · T ) for better reading.
We first apply the multinomial theorem to expand the power
of the (infinite) sum as an infinite sum of infinite products.

yMu (t) =
∑

(
∑
j∈Z ij)=M

M !∏
j∈Z(ij !)

∏
j∈Z

xiju (j) (50)

In the sum, only M̃ terms ij may be non-zero at the same
time since the ij are all positive integers. Then, we denote:
• M̃ the cardinality of the non-zero terms (0 < M̃ ≤M )
• {kj}j∈{1,···,M̃} the M̃ indexes j such that ij are non-zero

Thus, we can rewrite (50) as:

yMu (t) =
∑

k1<···<kM̃
0<M̃≤M

∑
(∑M̃

j=1 ikj

)
=M

ikj
6=0

M !∏M̃
j=1(ikj !)

M̃∏
j=1

x
ikj
u (kj) (51)

It is then possible to invert the sums by re-indexing terms
i independently from the kj . This operation leads to:

yMu (t) =
∑

0<M̃≤M(∑M̃
j=1 ij

)
=M

ij 6=0

∑
k1<···<kM̃

M !∏M̃
j=1(ij !)

M̃∏
j=1

x
ij
u (kj) (52)

Following the fact that 0! = 1 and x0u = 1, the set in the first
sum can be performed in the condensed generic set IM (11)
and the second sum in generic set Ki

M (14). M̃ can simply
be replaced by M in both the right-hand side products.

Then, we take the expectation of yu,i(t). Remarking that
that hiju (t− kjT ) is deterministic for a given {i,k, t} yields:

E [yu,i(t)] =
∑

k∈Ki
M

E

 M∏
j=1

siju (kj)

 M∏
j=1

hiju (t− kj · T ) (53)

The Poisson Summation Formula (PSF) is given by∑
k∈Z

g(t− kT ) =
1

T

∑
m∈ 1

T Z

ei·mt · G (m) (54)

where G(f) stands for the Fourier Transform of g(t).

Remarking that (53) can be written as

E [yu,i(t)] =
∑
k∈Z

g(t− kT ) (55)

where

g(t− kT ) =
∑

k∈K0i
M

E

[
M∏
j=1

s
ij
u (kj)

]
M∏
j=1

h
ij
u (t− kT − kjT ) (56)

makes it possible to apply the PSF to g(t− kT ), yields (15).

APPENDIX B
JUSTIFICATION OF SECTION VI.

Lets unfold the expression of λm from (7) and (25):

λm =

∣∣∣∣∣∣F
 ∑

m′∈MM
U

(
M
m′

) U∏
u=1

y
m′
u

u (t)

 (fm)

∣∣∣∣∣∣
2
M

(57)

Denoting by
(∗Uu=1 fru

)
= fr1∗· · ·∗frU – where ∗ stands

for the classical convolution – and considering the properties
of the Fourier Transform, (57) may be written as:

λm =

∣∣∣∣∣∣
 ∑

m′∈MM
U

(
M
m′

)
U∗
u=1
F
(
y
m′
u

u (t)
) (fm)

∣∣∣∣∣∣
2
M

(58)

At frequency fm, the terms in the sum in (58) are all null
if m′ 6= m and if the frequencies fm′ for m′ ∈ MM

U are all
different. Moreover, F (ymuu (t)) (f) is zero if f 6= fmu . Then,
the convolution is a simple product at frequency fm. Yields:

λm =

∣∣∣∣∣
(
M
m

) U∏
u=1

F (ymuu (t)) (fm)

∣∣∣∣∣
2
M

(59)

Then, (34) is simply obtained by distributing the ab-
solute value in the product and by remarking that
|F (ymuu (t)) (fm)| =

(
a2u · λu,mu

)mu
2 .
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APPENDIX C
JUSTIFICATION OF SECTION VII.

The Probability Density Functions (PDF) of the PSD of yM

under H0 and H1 were developed in the literature related to
spectral analysis [28]. First, (40) can be obtained from (39)
with a simple variable change. Then, (41) is derived as:

λrefm =

∫ ∞
0

p [MPTy(fm) = x]x dx (60)

Replacing I0 by its expression and inverting both sum and
integral operators yields:

λrefm =

∞∑
k=0

MλkMm
(k!)2η2k+1

M

∫ ∞
0

x(k+1)M · e−
xM+λMm
ηM dx (61)

Replacing the integral by its expression may give:

λrefm = M
√
ηMe

−λ
M
m
ηM

∞∑
k=0

1

(k!)2

(
λMm
ηM

)k
Γ

(
1+k+

1

M

)
(62)

Denoting by ·(k) the rising factorial and noting that
Γ
(
1+k+ 1

M

)
=
(
1+ 1

M

)(k) · Γ (1+ 1
M

)
and that k! = 1(k),

we finally get expression (41).

REFERENCES

[1] O. Vidal, G. Verelst, J. Lacan, E. Alberty, J. Radzik, and M. Bousquet,
“Next generation High Throughput Satellite system,” IEEE First AESS
European Conference on Satellite Telecommunications (ESTEL), 2012.

[2] R. Alegre-Godoy, N. Alagha, and M. A. Vazquez-Castro, “Offered
Capacity Optimization mechanisms for Multi-beam Satellite Systems,”
IEEE International Conference on Communications (ICC), 2012.

[3] J. Palicot (Supervised by), “Radio Engineering: from Software Radio to
Cognitive Radio,” Wiley, 2011.

[4] M. Hoyhtya et al., “Application of Cognitive Radio techniques to
Satellite Communication,” IEEE International Symposium on Dynamic
Spectrum Access Networks (DYSPAN), 2012.

[5] S. K. Sharma, S. Chatzinotas, and B. Ottersten, “Cognitive Beamhopping
for Spectral Coexistence of Multibeam Satellites,” Future Network and
Mobile Summit, 2013.

[6] D. Christopoulos, S. Chatzinotas, and B. Ottersten, “User Scheduling
for Coordinated Dual-Satellite Systems with Linear Precoding,” IEEE
International Conference on Communications (ICC), 2013.

[7] A. Soysal, S. Ulukus, and C. Clancy, “Channel Estimation and Adaptive
M-QAM in Cognitive Radio Links,” IEEE International Conference on
Communications (ICC), pp. 4043–4047, 2008.

[8] J. Palicot and C. Roland, “A New Concept for Wireless Reconfigurable
Receivers,” IEEE Communications Magazine, vol. 41, no. 7, 2003.

[9] M. Zaerin and B. Seyfe, “Multiuser Modulation Classification based on
Cumulants in AWGN channel,” IET Signal Processing, 2012.

[10] C. M. Spooner, “Classification of Co-channel Communication Signals
using Cyclic Cumulants,” Proceedings of ASILOMAR-29, 1996.

[11] V. Gouldieff, J. Palicot, and S. Daumont, “Blind Digital Modulation
Classification based on Mth-Power Nonlinear Transformation,” IEEE
Global Conference on Signal and Information Processing, 2016.

[12] V. Weerackody, “Sensitivity of Satellite Interference to Locations of
Small-Aperture Terminals,” IEEE Transactions on Aerospace and Elec-
tronic Systems, 2016.

[13] S. Chatzinotas, G. Zheng, and B. Ottersten, “Joint Precoding with
Flexible Power Constraints in Multibeam Satellite Systems,” IEEE
Globecom, 2011.

[14] K. Liolis et al., “Cognitive Radio Scenarios for Satellite Communi-
cations: the CoRaSat Approach,” Future Network and MobileSummit
Conference, 2013.

[15] Comtech, “CDM-625 Advanced Satellite Modem,” User Manual, 2013.
[16] J. E. Mazo, “Jitter Comparison of Tones Generated by Squaring and by

Fourth-Power Circuits,” Bell System Technical Journal, 1978.
[17] O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of Automatic

Modulation Classification Techniques: Classical Approaches and New
Trends,” IET Communications, vol. 1, no. 2, pp. 137–156, 2007.

[18] A. Hazza, M. Shoaib, S. A. Alshebeili, and A. Fahad, “An Overview of
Feature-based Methods for Digital Modulation Classification,” ICCSPA,
vol. 1, no. 08, pp. 1–6, 2013.

[19] A. Swami and B. M. Sadler, “Hierarchical Digital Modulation Classifi-
cation using Cumulants,” IEEE Transactions on Communications, 2000.

[20] O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Cyclostationarity-Based
Modulation Classification of Linear Digital Modulations in Flat Fading
Channels,” Wireless Personal Communications, 2010.

[21] W. A. Gardner and C. M. Spooner, “The Cumulant Theory of Cyclosta-
tionary Time-Series, Part I: Foundation,” IEEE Transactions on Signal
Processing, 1994.

[22] C. M. Spooner and W. A. Gardner, “The Cumulant Theory of Cyclo-
stationary Time-Series, Part II: Development and Applications,” IEEE
Transactions on Signal Processing, 1994.

[23] O. A. Dobre, M. Oner, S. Rajan, and R. Inkol, “Cyclostationarity-Based
Robust Algorithms for QAM Signal Identification,” IEEE Communica-
tions Letters, no. 1, 2012.

[24] J. Reichert, “Automatic Classification of Communication Signals using
Higher Order Statistics,” IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 5, no. 4, pp. 221–224, 1992.

[25] C. W. Lim and M. B. Wakin, “Automatic Modulation Recognition
for Spectrum Sensing using Nonuniform Compressive Samples,” IEEE
International Conference on Communications (ICC), 2012.

[26] H. J. Ryser, “Combinatorial Mathematics,” Mathematical Association of
America (Book), 1963.

[27] C. Chatfield, “The Analysis of Time Series: An Introduction,” Book, 4th
Ed. Chapman and Hall, 1989.

[28] G. Jenkins and D. Watts, “Spectral Analysis and Its Applications,” 1968.

Vincent Gouldieff received the Engineer degree
in Electrical and Computer science from Supelec,
France, in September 2014. He received the Master
of Science I-MARS (Micro-technologies, Architec-
ture, Networks and Communication Systems) from
the National Institute for Applied Sciences, Rennes.
From October 2014, he is a Ph.D candidate at the
SCEE (Signal, Communication and Embedded Elec-
tronics) research team, Rennes, France, in CIFRE
partnership with Zodiac Data Systems, Caen, France.
His main research topics are related to blind signal

processing methods, especially applied for satellite communication systems.

Prof. Jacques Palicot received, in 1983, his Ph.D
degree in Signal Processing from the University of
Rennes. Since 1988, he has been involved in stud-
ies about equalization techniques applied to digital
transmissions and analog TV systems. Since 1991
he has been involved mainly in studies concerning
the digital communications area and automatic mea-
surements techniques. He has taken an active part
in various international bodies EBU, CCIR, URSI,
and within RACE, ACTS and IST European projects.
He has published various scientific articles notably

on equalization techniques, echo cancellation, hierarchical modulations and
Software Radio techniques. He is author or co-author of more than 300
publications with more than 50 in journals, two books and 22 patents. He
is currently involved in adaptive Signal Processing, digital communications,
Software Radio, Cognitive radio and Green Radio. From November 2001 to
September 2003 he had a temporary position with INRIA/IRISA in Rennes.
He serves as Associate Editor for EURASIP JASP since 2008. He also served
as lead guest editor for several Special Issues on Software Radio, Cognitive
Radio and Green Radio. He was Co General Chairman of ISCIT 2011,
Co General Chairman of Next-GWiN 2014, Technical Program Chairman
of CROWNCOM 2009, Technical Program Chairman of GREENCOM 2013
and Technical Program Chairman of CRN Symposium of ICC 2014. Since
October 2003 he is with CentraleSuplec in Rennes where he leads the Signal
Communications and Embedded Electronics (SCEE) research team.

Dr. Steredenn Daumont received the engineer-
ing degree in Electronics from ENSSAT, Lannion,
France, in 2006. She received the Ph.D degree
in signal processing and telecommunication from
the University of Rennes 1, Institute of Electronics
and Telecommunications of Rennes (IETR), SCEE
Team, Supelec, in 2009. From 2006 to 2009, she
worked on blind sources separation of MIMO signals
and on PAPR, in the SCEE team. Since 2010, she has
been working at Zodiac Data Systems. Her research
interests are in signal processing for communica-

tions, blind sources separation and characterisation of satellite signals.


