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ABSTRACT

Automatic Modulation Classification (AMC) has received ajona
attention last decades, as a required step between sigeeatida
and demodulation. In the fully-blind scenario, this tastatuout to
be quite challenging, especially when the computationatptex-
ity and the robustness to uncertainty matter. AMC commoelies
on a preprocessor whose function is to estimate unknowmmeara
ters, filter the received signal and sample it in a suitablg weay
preprocessing error inherently leads to a performance [6gsm-

prove the robustness of the blind AMC, we propose to procéed a

most directly on the received signal — with neither matcfikering
step nor synchronization step. In this paper, Analytie&l*-Power

nonlinear Transformation (&/PT) is considered for its robustness

towards timing, phase and frequency uncertainty. The geéedr
feature-vector then feeds a Minimum Distance classifiermiur
cal simulations show the effectiveness of the proposed oddthr a
7-class problem of low-order modulations.

Index Terms— Automatic Modulation Classificationj/t"-
Power nonlinear Transform, Blind Detection.

1. INTRODUCTION
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Fig. 1. A common Feature-Based AMC architecture

FB classifiers rely on two sub-steps, namely a feature compu-
tation step and a decision making step. Signal statistsgd fea-
tures, for instance Higher Order Statistics (HOS), haven éidely
studied for their ability to differentiate between digitabdulations.
Cyclostationarity is also a good candidate in the blind aderfor its
robustness to frequency, phase and time offsets [5]. Numseateci-
sion algorithms were proposed, as Artificial Neural Netw@KkIN),
Support Vector Machine (SVM) or Decision Tree (DT) [5][6].

Swami et al. proposed a classifier relying on Higher Order Cu-
mulants (HOCs) and DT to recognize PAM, QAM and PSK modu-
lations [7]: this method is indeed efficient but unsuitedtia blind
scenario. As a step towards blindness, some improved HG&dba
methods were proposed to face unknown signal power [8] oiecar
frequency offset [9][10]. As expected, the CCR is improveithw
these methods when the preprocessing task is assumed ewn-id
Cyclostationarity was also proposed to detect spectruest{8] and

The demand for reconfigurable radio technologies — such @s Coclassify analog and digital modulations [11]. Its main doaek is

nitive Radio (CR) — has led to an increasing need for blinahaig
processing, such as spectrum sensing [1], standard reioogf#]
and feature detection [3]. Since the early 90’, AutomaticduMla-
tion Classification (AMC) has been extensively studied asptre-
sents a key challenge in Cognitive Radio. In recent yeakgrak
techniques for AMC have been reported in the literature Mast
of these methods rely on a two-steps architecture: a sigearg-
cessing task followed by a recognition algorithm (see €ig., 1).

the complexity entailed by the computation of the cyclicdtion.
Recently, several fully blind AMC techniques based on the
M -Power nonlinear TransformationMPT) were suggested
[12, 13, 14]. MPT was first studied as a tool for carrier and timing
synchronization [15] and then used for AMC in the 90’ [18YPT
is of major interest since the produced features are inbend$o
time, frequency and phase offsets: thus, no elaborate qegsing
step is needed. In most of the previous work, the recogniitdy

The first step generally consists of a demodulator whichgeedrelies on the number of peaks generated by MieT for different

the recognition algorithm with a filtered, normalized andnbpl-
spaced sampled signal. Therefore, numerous inherent pteestof
the received signal — such as the symbol rate, pulse shagnggr
frequency, signal and noise powers — are generally assumbd t
perfectly known at the receiver. This strong assumption ontra-
diction with the blind property needed in a smart receiver.

M. Then, the classifier is unsuited for an efficient classifcatf
the test-set contains some constellations of the same order

We propose a novel fully-blind method for AMC, based on the
theoretical power of the peaks generated by MiBTs. This tech-
nique — we called AnalyticaM PT (AMPT) — is suitable for PSK,
PAM, QAM and hybrid modulations. Moreover, the preprocegsi

The second step (the modulation recognition algorithmifjtse task is the simplest possible to improve the robustnesseofvtiole
may rely on a Likelihood-Based (LB) or a Feature-Based (FB)classifier to estimation uncertainty. A simple MD classifgsronsid-

method [4]. While the former is optimal in the Correct Cléissition
Rate (CCR) sense, the latter is often favoured for its netiral
performance at a lower complexity. As a consequence, Weogep
in the scope of this article a new Feature-Based classifidwi-O
ously, the quality of the whole blind algorithm depends othlzbe
performance of the preprocessor and of the recognitiorrithgo.

ered for a better fusion of the different powers in the featspace.

The paper is organized as follows: In Section 2 the problem un
der study is formulated, while in Section 3 the proposeddhiivIC
method is described. In Section 4 the theoretical developighe
references is carried out. The performance is studied \tensive
simulations in Section 5.



2. PROBLEM FORMULATION

Let us assume that the signal-of-interest consists of adaseu
baseband pulse-shaped digital signal in AWGN channel.
scenario is relevant, for instance, for fixed satellite camivation
systems. The signal is then modelled as

z(n) =a " TN (k) h(nT. — kT —7) +w(n) (1)
k

wherea is the amplitude of the signaf;. is the residual carrier fre-
quency offsetg is the initial phases(k) is the unknown sequence
of .i.d. symbols,h is the pulse shaping functioff, is the sampling
period, T is the symbol periody is the initial delay andv is the
sampled and unfiltered white Gaussian noise.

We consider that is a root raised cosine (RRC) filter with un-
known roll-off 3 and that the oversampling factpr= Tl respects
the Shannon’s theorem i.e¢2,> 1 4+ 5. Remark that we do not as-
sume any time or frequency synchronization here. We denof€ b
the number of considered symbols. Thus, we dispos¥.0&= p N
samples for the classification. We assume that all the paeasia
(1) are constant of®); N, — 1].

We consider the 7-class problem®f= {BPSK, QPSK, 8PSK,
8AMPM, R8QAM, C8QAM, 16QAM; in order to show the effec-
tiveness of the proposed method on quite similar zero-mediait-
variance constellations (see Fig. 2).

Q Q
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BAMPA RBGAM CBaAM
Fig. 2. Representation of the considered zero-mean and unit-

variance constellations in the complex plan

3. DESCRIPTION OF THE PROPOSED AMC METHOD

3.1. Basic definitions

In the scope of the paper, we define thePT of z(n) as theM*"-
root of the Power Spectral Density (PSD)o¥ (n)

2
Ne—1 M

Z x]\/f (n) . 672i7rnf

n=0

S

MPT,(f) = N, &)

This transform may show spectral lines around the null fre-
quency for some values d¥/: their existence and power mainly

depend on the emitted constellation.

While otherM PT-based techniques in the literature only exploit

the existence property [12, 13, 14, 16] — and then fail teedéhtiate
between quite similar constellations such as QPSK and 16Q#M

BPSK and R8QAM — we instead propose to exploit the power of

the spectral lines as strong features. We then dispose & usaful
information, which also further enables to derive a softislen.

3.2. Proposed preprocessing unit

In the fully-blind scenario, some preprocessing tasks tave car-

Thigied out. First, a spectrum sensor (see e.g., [1]) followed lstan-

dard recognizer (see e.g., [2]) respectively locate thebamere the
AMC have to be performed and provide information for furtder

tection stages. Thereby, these tasks are assumed copedtymed
without affecting the blind property of the proposed methdtien,

a simple normalizer and parameter estimator proceed asvill

3.2.1. Normalization

Assume that no interferer is present in th8d B bandwidth of the
received signal, it is clear thdtsyg = P, - p~ ' + P, - Pr 348,
whereP,, is the power of the noisd?, is the power of the noiseless
signal-of-interesti(n) = z(n) — w(n), and P 345 is the power of
the pulse-shaping filter in its 3d B bandwidth. With a root-raised
cosine filter, we hav@y 345 = 1 — 2 + 2 and we eventually get

—

6 —/\.Ml
Pu:P3dB P,-p

1-2+8

@)

If not known, remark thag3, p and P,, can be easily estimated
using the formerly computed PSD ofn).

3.2.2. Residual Carrier Frequency Estimation

The residual carrier frequengy. also has to be estimated in order to
locate the spectral lines — which occur at frequengigs= M f.
Such an estimation is generally performed by a maximum-to-
mean detector applied on the compufddPTs:
(Mpugy-MPuu»

~

M f, = argmax
fiM

(4)

whereMPT,(f) is the mean value a¥/PT,(f) around the peak.

3.2.3. Output of the preprocessor

The preprocessor feeds the feature-computer with the riaada
version ofz(n) and with the set of estimated parameters (Fig. 1):

Q)

In realistic conditions, band-pass pre-filtering is coesid as
well for a better rejection of out-of-band noise and adjacigmnals.

y(n) = (n)- P, * andi = {B.5. 7.}

3.3. Decision Making via Minimum Distance classification

We use a Minimum Distance (MD) classifier to fusion the feasur
of set{MiPTy(Miﬁ), M; € /\/l} and compare them with the the-
oretical references. Denote bythe feature-vector

1= [MiPT,(M1],) -+ MinPT, (Mo f)] (6)

and bylIIS, the theoretical feature-vectordt is emitted (please refer
to the next Section for the derivation of the references)

I1§, = [MiPTg, --- MPT], @

the distance is simply computed with norm-2 as
AC = || — 115, |2 8

We finally get the estimated constellatiGhas
C= argmin A€ 9)

cecC



3.4. Description of the proposed algorithm

Theoretical values diPTS, are tabulated as follows:

The proposed fully-blind whole AMC algorithm is summed up in| C — | BPSK | QPSK| 8PSK |8AMPM|R8QAM|C8QAM|16QAM |

Fig. 3, where the general structure of Fig. 1 is conserved.
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Fig. 3. The proposed fully-blind AMC algorithm

4. THEORETICAL REFERENCES

In this section, we derive the theoretical power of the gpétines

occurring in theM PT function. Since the PSD of a cyclostationary H,

signal is insensitive to phase and time offsets [16], we rassthat

¢ = 0andr = 0in(1). Moreover, without loss of generality and for

ease of notation, we assume that the residual frequénisynull.

We first work on a noise-free, continuous-time and infinite

length signal. The derivation of the references in realistinditions
is carried out in future work. In this section, we then coesid

u(t) =Y s(k) - h(t — kT)
k
where the notations were formerly defined in Section 1.
For the sake of a better understanding, we derive the thealret

(10)

[2PTG] 1 | o [ o [ o2 ] 23] o | 0 |

Table 1. Tabulated values afPTS, for C e C.

4.2. Computation of4PTS

The same development is carried out for the fourth powei(of,
which is plainly developed as

u4(t) = u4000(t) + us100(t) + u2200(t) + w2110 (t) + w1111 ()

where the notation in the right-hand side terms is stradgthrd
when compared to (11) - (13).

Now, both termsuaoeo (t) anduz200(t) have an impact on the
power of the spectral lines while the remaining terms dotfiey
actually show null expectations). Then, following the nuettof IV.
A and after some simplifications in the indices, we may get:

4PTG, = | & (Els")Hi(0) + 6 (E*))” S HE (0)

T k>0
whereH () stands for the Fourier Transform bf (t) andHég) (N
stands for the Fourier Transform bt (t) - h?(t — kT).

Note that no simple analytical formula can be found neitloer f
(0) nor for Hé’;)(o) and that they depend gh However, they
can be easily computed numerically. A few valuestBfl$; as a
function of 8 are gathered in Table 2.

(16)

|/3¢c| BPSK| QPSK| 8PSK |8AMPM|R8QAM|C8QAM|16QAM|

0.15 | 1.233| 0.856| 0.000| 0.734 | 0.770 | 0.929 | 0.713
0.25 | 1.200| 0.881| 0.000| 0.754 | 0.743 | 0.961 | 0.737
0.35 | 1.173| 0.907 | 0.000| 0.774 | 0.719 | 0.991 | 0.760

Table 2. Tabulated values efP TS, for C' € C and for differents.

references whe = 2 andM = 4. References for other values of 4.3. Representation in the feature-space

M follow the exact same principle.

4.1. Computation of2PTS,

As developed in [15];2 easily splits into two sums

u2 (t) = UQO(t) + ull(t) (11)

where uzo(t) = > s°(k) - h? (t — kT) (12)
k

wir(t) = > s(k)-s(k')-h(t—kT)-h(t—KT) (13)

k#£k!

The presence of a frequency peak in the PSf) at null
frequency is made obvious by applying the Poisson SummE&ton
mula on fictive signalizo (¢). In fact, we have

E [uzo (t)] = @ S e Hy (m)

m

(14)

Fig. 4 shows the theoretical and simulated feature-vedtothe
feature-space. Note that a proper noise-corrective tereddgd to
the references so that they better match the simulatedrésatu

L2y Bpsk @]
C8QAM
QPSK 8AMPM R8QAM
~ 0. :
g % ®
> 06 [16QAM :
o
<
041
0.2 Computed |4
* /8PsK Theoretical
0 i i i ; !
0 0.2 0.4 0.6 0.8 1

2PT, (211)

Fig. 4. Theoretical and simulated feature-vectors, for 100 zaali
tions per constellation, SNR 15 dB, 3 = 0.3, p = 2andN = 1e*

wherem corresponds to the multiples of the symbol frequency and

Ho(f) corresponds to the Fourier Transform fgf(¢). Note that
u11(t) doesn’t produce any spectral line foi.d. symbol sets since
E[s(k)s(k + n)] = 0 whatevern # 0. In the scope of the paper,
h*(t) corresponds to a raised cosine (RC) filter. TH&n0) = T
and the theoretical reference wh&h = 2 is finally derived as:

2PTy, = |E[s7]| (15)

Obviously, some sets of constellations will be easier ttirdis
guish than other sets, as Fig. 4 and Table 3 show. Note th# Tab

3 gives the distance between constellatiGhand ¢’ asASC" =

|ITIS, — 115, ||2. In future work, it would be interesting to study the
probabilistic behaviour of the features. Then, we couldveethe

theoretical Correct Classification Rate (CCR) of the prepo&MC

method. Herein, we present numerical results in the nexiosec



| Constellation | 1
| BPSK| QPSK| 8PSK |8AMPM|R8QAM|CSQAM|16QAM| 0-9E
- 2
BPSK|[ 0 [ 1.004] 1.419 [ 0.905 [ 0.564 | 0.988 [ 1.055 8 08
QPSK 0 0.761 | 0.219 | 0.656 | 0.068 | 0.159 g 07
S || 8PsK 0 0.639 | 0.861 | 0.829 | 0.602 B o6
= |[éAMPM 0 0.468 | 0.268 | 0.161 = os
2 |[R8QAM 0 | 0677 | 0629 8 —6—BPSK
S |[csqam 0 | 0227 g o4 ——QPSK |
1) —H&—8PSK
16QAM 0 £ 03 —5— 8AMPM | |
. o © 0.2 R8QAM | |
Table 3. Distance Matrix in the proposed feature-space CBOAM
0.1f —A— 16QAM ||
5. NUMERICAL RESULTS o ‘ ‘
0 5 SNR (dB) 10 15
Extensive simulations were carried out to show the effecidss of Fig. 5. Correct Classification Rate as a function of SNR
the proposed method. The performance of our algorithm éscm-
pared with the CCRs obtained with Swam{,-based classifier 1 .

([7], Ex. 1) in both the blind and the non-blind scenario. Exper-
iments were performed on 10000 trials per constellatiortaRéhat
N is the number of symbols used for the classification.

5.1. Performance of the proposed classifier

Table 4 shows the Confusion Matrix (CM) for the proposed a&sl
problem in the blind scenario. For a better reading;, fneans0%.
As expected, the worst CCR is obtained for QPSK/C8QAM since

Classification Rate
o
~

ect
o
s>

these constellations are the closest inZR&/4PT feature-space. 5

Considering other features — such as higher-order or catgdg  © 03 O Swami's G, = Blind 1
MPTs — would improve the distance between these constelfatio § ,,!| —o— Swami's G~ Non-Blind| |
However, increasing/ may also involve a degradation of the CCR = -0+ AMPT - Blind
at low SNRs since the features would show a more stochastic be %[ —H— AMPT - Non-Blind i
haviour asM grows and as the SNR weakens. 0 | !

0 5 SNR (dB) 10 15
| Transmitted Constellation | Fig. 6. Mean CCR for both methods in the blind/non-blind scenario

| BPSK | QPSK | 8PSK |8AMPM|R8QAM|C8QAM|16QAM|

1 BPsK 1 100% . i i . 5.3. Complexity comparison with theCy-based classifier
Z|LQPSK|l . | 841%| . 08% | . 17.7%) 4.3% Last, we compare the 2PT/4PT-based method with(hebased
3 || 8PsSK : : 99.3%| . : : : classifier in terms of complexity. In both cases, the grestdipera-
& |[BAMPM)| . | <O1%| 02% | 963%| : 0.9% tion is the computation of the features.

g |[RsoAm)| . : : : 100% ) . : The computation ofM/PT(Mf,) (2) asymptotically requires
O ||C8QAM|| . | 151%] . : | 822%| <01%|  pfN, complex multiplications andV. complex additions if the
| |[16QAM|| . | 07% | 05% | 29% | . |<0.1%]| 947%]  exponential was precomputed. Then, the 2PT/4PT-basesiftas

requires6 N. complex multiplications an@ N. complex additions.

In comparison, the computation &y is slightly lower since it

requiressN. complex multiplications and N. complex additions.
Fig. 5 shows the CCR in the blind scenario for the proposed 7-

class problem as a function of the SNR. In this context, wee sy 6. CONCLUSION

N = 1000 andp = 2. As expected, sgiBPSK, R8QAM, 8PSK is

the easiest to classify, while the CCR fd@pPSK, CBQAM remains  Throughout this article, a new efficient way to blindly cli@gslig-

Table 4. Confusion Matrix withSN R = 10 dB andN = 1000 for
the proposed 7-class problem and in the blind scenario

slightly lower for medium-to-high SNR (see especially Eai). ital modulations is described. The method is based on anyfinal
) ) - cal study of theM/*"-Power nonlinear Transformation. The feature-
5.2. Performance comparison with theC,o-based classifier vector used for the classification is insensitive to timeagghand

We compare the CCR obtained by Swami’so-based method in frequency offsets, which makes the whole classifier moreisoto

[7] — commonly used as a benchmark in the literature — with theestimation uncertainty in the blind scenario.

proposed A/PT-based classifier, in the same conditions as Fig. 5. The key features of the proposed method are the absence of com
Mean performances of the methods in both the blind and th@lex preprocessing and its low complexity. These propertiake it

non-blind scenario are depicted in Fig. 6. ThePX/A4PT-based a great tool in smart receivers for wide-band monitoring tondhe

classifier shows a slight increase in the performance of ldmEsie  estimation of the features of the signal before the demaidulatep.

fication in the non-blind scenario. Besides, in the fullintlsce- Further work shall be carried out, for instance regardiregsta-

nario, the 2PT/A4PT-based classifier clearly outperforms Swami's tistical distribution of the feature-vector in realistiorglitions. The

method. This is mainly due to a better robustness of the o effects of multi-path channels on the analytical developinud the

features to inherent estimation errors at the preprocessor references shall also be investigated.
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