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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca





Solving the air conflict resolution
problem under uncertainty as an
iterative bi-objective mixed
integer linear program

Thibault Lehouillier

Moncef Ilies Nasri
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Abstract: In this paper, we tackle the aircraft conflict resolution problem under uncertainties. We consider
errors due to the wind effect, the imprecision on the aircraft speed prediction, and the delay in the execution
of maneuvers. Using a geometrical approach, we derive an analytical expression for the minimum distance
between aircraft, along with the corresponding probability of conflict. These expressions are incorporated into
an existing deterministic model for conflict resolution. This model solves the problem as a maximum clique
of minimum weight in a graph whose vertices represent possible maneuvers and where edges link conflict-
free maneuvers of different aircraft. We then present a solution procedure focusing on two criteria, namely
fuel efficiency and the probability of re-issuing maneuvers in the future: we iteratively generate solutions of
the Pareto front to provide the controller with a set of possible solutions where he/she can choose the one
corresponding the most to his/her preferences. Intensive Monte-Carlo simulations validate the expressions
derived for the minimum distance and the probability of conflict. Computational results highlight that up
to 10 different solutions for instances involving up to 35 aircraft are generated within three minutes.

Key Words: Air traffic management, air traffic control, mixed integer linear programming, uncertainties,
multi-objective programming.

Résumé : Cet article traite la prise en compte d’incertitudes lors de la résolution de conflits. Plus par-
ticulièrement, nous considérons les incertitudes dues aux erreurs de prévisions météorologiques sur le vent,
ainsi que les erreurs de mesure de la vitesse venant de la connaissance incomplète des paramètres physiques
des avions. Nous introduisons également un nouveau type d’incertitudes : le délai dû aux communications
entre le contrôleur et les pilotes. Ces perturbations induisent une erreur longitudinale sur la trajectoire des
avions que nous quantifions, afin d’établir une formule analytique de la probabilité de conflit entre chaque
paire d’avions. Nous abordons ensuite le problème de résolution de conflits sous un angle bi-objectif. Pour ce
faire, nous considérons un critère économique correspondant à la consommation de carburant pour exécuter
les manœuvres, ainsi qu’un critère de sécurité décrit par l’espérance du nombre de conflits. Nous présentons
ensuite une méthode itérative permettant de générer un ensemble de solutions approximant le front de Pareto
du problème. Cette approche est innovante car elle nous permet d’avoir une approche bi-objectif du problème
de résolution de conflits, ce qui correspond plus à la nature intrinsèque du problème, et elle permet de fournir
au contrôleur un ensemble de solutions. Ce dernier point est le plus pertinent car la notion d’optimalité
est discutable en résolution de conflits à cause de l’existence de plusieurs “bonnes solutions” proches de la
solution optimale, et il peut être intéressant de laisser au contrôleur des options dans sa prise de décision.
En moyenne, 6 solutions sont générées en moins de 3 minutes pour des instances ayant jusqu’à 35 avions.
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1 Introduction

1.1 Automating air traffic control

In the current air traffic management (ATM) organization, the air traffic control (ATC) is in charge of

maintaining safety. To this end, controllers monitor the traffic to ensure the separation between all aircraft

at all times. A projected loss of separation between two aircraft is called a conflict and must be solved by the

controller. To this end, avoidance maneuvers are issued to the pilots of the involved aircraft to prevent the

loss of separation. Maintaining safety in the airspace is a challenging task, especially in a context of increasing

traffic. Indeed, the latest long-term forecast published by EUROCONTROL states that the traffic demand

will increase by 20% to 80% between 2012 and 2035 (EUROCONTROL, 2013). Besides, a simulation-based

study performed by Lehouillier et al. (2014) shows that for a 50% increase in traffic, the controllers in charge

of busy sectors would have to solve 27 conflicts per hour on average. During the last decade a lot of research

was conducted on the development of automated decision tools to help the controller. Such automated tools

are recognized as key-components of future ATM systems like the Single European Sky ATM Research (see

SESAR Joint Undertaking (2012)) project in Europe and the Next Gen (see Joint Planning and Development

Office (2008) for details) program in the United States.

1.2 The air conflict resolution problem

One complex and central problem encountered in ATC is the air conflict resolution problem (CR). A conflict

occurs when two aircraft are too close to each other regarding predefined horizontal and vertical separation

distances of respectively 5NM and 1000ft. To solve a conflict, the controllers issue maneuvers that can consist

of speed, heading or altitude changes. Given the current position, speed, acceleration and the predicted

trajectory of a set of aircraft, the CR problem corresponds to identifying the conflict-free maneuvers that

minimize a given cost function. The CR problem can be tackled following two different settings, namely

deterministic and stochastic. The first one assumes that aircraft follow exact trajectory predictions, along

with maneuvers applied without any errors. However, uncertainties are one of the reasons why ATC is a

complicated task. The weather conditions, along with the incomplete knowledge of the physical characteristics

of the aircraft and the imprecision during the communication and maneuver execution processes represent

the main factors of uncertainty in ATC (Erzberger et al., 1997). In this context, the uncertainties cause

a perturbation of the trajectory, inducing cross and along-track errors in the prediction of the trajectory.

The along-track error (or longitudinal error) is the distance between the predicted aircraft position and

the projection of the actual aircraft position on the predicted trajectory. The cross-track error (or lateral

error) corresponds to the distance between the actual aircraft position and the predicted trajectory. Figure 1
illustrates these errors. They can jeopardize the conflict resolution process. To tackle this issue, stochastic

resolution methods aim at solving the CR problem while taking into account these perturbations.

1.3 Literature review on the CR problem

The CR problem is one of the most widely studied problems in ATM. We provide a synthetic analysis of the

studies that were most influential to our work, both in a deterministic and a stochastic setting.

A complete coverage of the existing literature on the deterministic CR problem may be found in the

review performed in Mart́ın-Campo (2010). Mixed integer linear and nonlinear programming are powerful

theoretical frameworks for the study of CR. With the realistic restriction that the aircraft perform at most

one maneuver at the initial time, Pallottino et al. (2002) exploit the geometry of the separation constraints to

develop two mixed integer linear programs (MILPs) that allow either speed changes with constant headings or

heading changes with constant speeds. Alonso-Ayuso et al. (2012) extend the model of Pallottino et al. (2002)

by introducing continuous instead of instantaneous speed changes. More recently, Omer (2015) develops a

MILP with a space discretization using only the points of interest for the conflict resolution.

Uncertainties can be gathered and modeled as having a global impact on the trajectory prediction. Ballin
and Erzberger (1996) quantify the along-track error by comparing prediction and actual data for the Dallas
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Figure 1 Cross and along-track errors on an aircraft trajectory
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actual data for the Dallas Fort Worth Airport. Results highlight that for a time horizon shorter

than 20 minutes, the error follows a normal distribution. Irvine (2002) develops an expression of

the minimum distance and the corresponding probability of conflict using a geometrical approach.

The author models cumulative cross and along track errors that are affected to each aircraft at

the beginning of the observation. After applying this initial perturbation, aircraft are assumed to

evolve in a deterministic environment. Uncertainties can also be divided into different categories

than can be modeled more specifically. For instance, Lygeros and Prandini (2002) model the effect
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Fort Worth Airport. Results highlight that for a time horizon shorter than 20 minutes, the error follows a

normal distribution. Irvine (2002) develops an expression of the minimum distance and the corresponding

probability of conflict using a geometrical approach. The author models cumulative cross and along track

errors that are affected to each aircraft at the beginning of the observation. After applying this initial

perturbation, aircraft are assumed to evolve in a deterministic environment. Uncertainties can also be divided

into different categories than can be modeled more specifically. For instance, Lygeros and Prandini (2002)

model the effect of the wind and the resulting FMS correction. Cole et al. (1998) and Schwartz et al. (2000)

conduct statistical studies comparing predictions to actual data in the Denver area to derive the correlation

structure of the wind. Chaloulos and Lygeros (2007) study the perturbations due to imprecisions in the speed

and air temperature measures. The authors model the error as a normal distribution.

When the uncertainties become too complex to derive exact probability expressions, Monte-Carlo simu-

lations are often performed. Prandini et al. (2000) use Monte-Carlo simulations to develop a model where

the wind correlates the cross and along track errors.

1.4 Critical analysis and contribution statement

The literature review highlights that a lot of results have been established to solve the CR problem, both in

the deterministic and the stochastic setting. Nevertheless, some features still need to be addressed. More

specifically, we formulate three observations that we consider important when designing a resolution tool

for the CR problem. The first one relies on the fact that robustness is critical in ATC. A large span of

factors can have a dramatic impact on the conflict resolution. As a consequence, it is necessary to provide

the controller with a tool as robust as possible. In other words, the controller needs to be ready to handle

every possible situation. To this end, the mathematical framework in the developed decision tools needs to

remain valid, whatever the hypotheses followed. Unfortunately, a lot of models lack of consistency when it

comes to the modification of hypotheses, like the introduction of uncertainties, or other modeling features

concerning the aircraft dynamics. For instance, the constraints in Pallottino et al. (2002) are linear when

aircraft perform either a heading change or a speed change, but become nonlinear when both are performed.

The second observation is related to the multi-objective nature of the CR problem. Indeed, focusing on only

one objective, like the fuel consumption, or the delays, does not necessarily reflect all the aspects of the

problem, nor does it respect the users’ preferences. Several multi-objective approaches of the CR problem

have been performed (Menon et al. (1999); Tomlin et al. (1998); Alonso-Ayuso et al. (2016)), and research

needs to be conducted in this direction. The last observation we formulate is that in conflict resolution the
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notion of optimality is subjective. Indeed, depending on the objective to optimize, the optimal solution is

not necessarily far better than other good solutions. As a consequence, providing the controller with only

one solution can be restrictive, depending on the context and the controller’s preferences. Few work has

been done on methods generating a set of solutions instead of a single solution. For instance, satisfycing

game theory (see Stirling and Goodrich (1999) for a description of the theory) allows to generate a set of

satisfycing solutions regarding two criteria representing the preferences of the players in terms of efficiency

or resource consumption. Applications to ATC have been considered (see, e.g., Archibald et al. (2008)), but

the hypotheses are quite restrictive, and the model suffers from a lack of computational power.

Our main contributions in our effort to provide an answer to the aforementioned remarks are twofold.

First, we provide an analytical expression of the minimum distance and the probability of conflict in a

context allowing complex uncertainties: the error in wind predictions is considered, along with the error on

the aircraft speed prediction. We introduce the uncertainty on the delay in the execution of maneuvers,

which to our knowledge has not been studied yet in the literature, although it is a reality in ATC. With this

approach, we are able to cover a large span of uncertainties involved in ATC. Besides, these computations

are fast compared to a simulation-based approach that can be more time consuming. Second, we model the

CR problem as a bi-objective problem minimizing fuel consumption and the probability that the controller

has to reissue maneuvers: we sequentially solve a mono-objective MILP. With this approach, we benefit from

the powerful results yielded by MILPs, namely the guarantee of finding an optimal solution (if existing) in

a short time, even for large and complex instances. Each iteration generates a solution that is immediately

available to the user. The set of generated solutions is a tight approximation of the Pareto front of the

solution. This method allows the user to choose which solution to apply within the generated set, depending

on his/her preferences or other factors. The MILP used is taken from a preliminary study performed by

Lehouillier et al. (2015b,a). It was chosen because it fully separates the modeling of the aircraft dynamics,

maneuvers and cost function from the resolution process. As a consequence, the hypotheses considered do

not jeopardize the validity of the proposed mathematical framework, and in particular the introduction of

uncertainties. Besides, the fact that we are able to introduce uncertainties in the model from Lehouillier

et al. (2015b) validates its robustness.

To evaluate the model, we first validate the computations derived for the probability of conflict by running

Monte-Carlo simulations. We use several test beds generating 2000 random scenarios to verify the correctness

of the developed theory. After the validation of the computations, we test our iterative resolution procedure

by conducting intensive simulations on a benchmark of structured and random instances that are complex

to solve. The aim of the experiments is to verify that our algorithm is able to provide the user with a set of

solutions in a short period of time, while ensuring that separation is maintained in complex situations.

The organization of the paper will be as follows. We formulate the problem in Section 2. We describe

the mathematical model to be adapted in Section 3. We detail the iterative optimization procedure used

to generate the set of solutions in Section 4. The method is then tested and analyzed through intensive

experiments described in Section 5.

2 Problem formulation

2.1 Aircraft dynamics

As in the majority of the literature, we use a three-dimensional point-mass model for aircraft dynamics. This

model establishes relationships between the different physical parameters of each aircraft.

dpx
dt

= V cos γ cosχ (1)

dpy
dt

= V cos γ sinχ (2)

dpz
dt

= V sin γ (3)
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dγ

dt
=

g0

V
(n cosφ− cos γ) (4)

dχ

dt
=

g0

V

n sinφ

cos γ
(5)

dV

dt
=

FT − FD
m

− g0 sin γ (6)

The position of the aircraft is given by the coordinates (px, py, pz) of its center of gravity in a local

coordinate system, (px,py) being its coordinates in a horizontal plane and pz its altitude. The aircraft flies

at speed V and the angles χ, φ and γ correspond respectively to its heading, roll and pitch. FT and FD
denote the norm of the thrust and drag forces respectively, m is the aircraft mass, n is the load factor and

g0 corresponds to the gravitational acceleration.

In this article, we make the assumption that aircraft are stabilized and follow a planar motion in a single

flight level. Aircraft follow their trajectory with a stepwise constant acceleration. This assumption is realistic

since it respects the time-continuity of speed, and it corresponds to a setting where maneuvers are performed

smoothly.

2.2 Aircraft maneuvers

The maneuvers are horizontal maneuvers consisting in heading and speed changes. These maneuvers are

performed dynamically in order to avoid a significant error in separation distance. Aircraft execute a speed

or a heading change with a constant acceleration and turn angle, respectively, according to values extracted

from Paielli (2003). Other types of maneuvers, i.e., flight level changes, could be considered without changing

the validity of the mathematical resolution.

2.3 Aircraft trajectory recovery

We consider that aircraft follow a 4D contractual trajectory, which represents a compromise between the

user’s preferences and the capacity constraints of the network. The trajectories of the aircraft then have to

meet time and space requirements over a sequence of 4D points. Noncompliance with this contract induces

penalty fees to companies. As a consequence, it is important to make sure that, after resolving every conflict,

every aircraft recovers its initial 4D trajectory. Ensuring a strict velocity control can be very costly and almost

impossible in practice. Physicial recovery is required, whereas time recovery is optional, but it is favored by

giving a penalty on the time shift between the 4D contract and the 4D trajectory after the maneuvers are

performed.

2.4 Maneuver cost

The cost of a maneuver corresponds to the additional burnt to perform the maneuver, along with a time

shift penalty. This measure serves as an indicator of the perturbation of the 4D trajectory induced by the

executed maneuvers.

For a jet commercial aircraft f with constant altitude, the fuel consumption by time and distance unit is

given by (7) and (8):

Ct,f (t, Vf (t)) = c1,f

(
1 +

Vf (t)

c2,f

)
FT,f (t) (7)

Cd,f (t, Vf (t)) =
Ct,f (t, Vf (t))

Vf (t)
(8)

where c1,f and c2,f are numerical constants depending on the type of aircraft f that are extracted from the

BADA performance tables EUROCONTROL (2011).

The time shift penalty is computed according to the method found in Omer and Farges (2013). The

penalty corresponds to the extra fuel burnt to make up for the time shift.
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2.5 Modeling the uncertainties

In this subsection, we detail the models used to describe the different uncertainties.

2.5.1 Error on wind prediction

The aircraft are considered as flying within a wind field. Control commands are issued to reach the desired

airspeed va, while the control units monitoring the aircraft speed are ground-based. As a consequence, the

groundspeed vg can be linked to the airspeed. Let w(p, t) denote the windspeed at position p at time t. We

have that:

vg(t) = va(t) + w(p(t), t) (9)

The wind vector is decomposed in a nominal part corresponding to weather forecasts, and a random part

describing the difference between the actual wind and its nominal part. The impact of the nominal wind of

the aircraft dynamics is quite complex and was briefly studied in the literature. Most publications focus on

the random part of the wind, and do not consider the nominal part. In this paper, we focus solely on the

random wind.

The wind field is a set of random vectors W(p, t) depending on the time and the point of space considered.

Taking the wind into account complexifies the conflict resolution. Indeed, aircraft that are close from each

other undergo highly correlated winds that will impact the conflict resolution. In this case, the error of

prediction for the different aircraft become correlated. We follow the models presented in Lymperopoulos

(2010). The authors simplify the computations performed in Cole et al. (1998) and Schwartz et al. (2000) in

order to save execution time. The wind is stationary and isotropic, and each random vector W(p, t) follows

a zero-mean normal distribution such that the following conditions hold:

E[W(p1, t1)] = 0,∀t1 ∈ R+,∀p1 ∈ R2 (10)

E [〈W(p1, t1)|W(p2, t2)〉] = 2f(t1,p1, t2,p2),∀(t1, t2) ∈ R2
+,∀(p1,p2) ∈ R4 (11)

where f is the correlation function associated with the random wind developed in Cole et al. (1998).

We assume that the flight management system (FMS)compensates for the lateral errors, but does not

correct the along-track errors. Indeed, the majority of commercial aircraft are equipped with 3D FMS which

track only the cross-track errors.

2.5.2 Error on aircraft speed measures

We consider the uncertainties due to the imprecision of speed and air temperature measures presented in

Chaloulos and Lygeros (2007). These errors have an impact on the along-track speed of the aircraft which is

modeled as a zero-mean normal variable independent from the other aircraft. Since these two uncertainties

are highly time-correlated, the authors assumed they were constant over time.

2.5.3 Delays in the execution of maneuvers

We model uncertainties induced by delays in the execution of maneuvers, which to our knowledge has not

been studied yet.

In the literature, models always assume that the performance of the maneuvers is instantaneous. However,

there are several actions required before the maneuver can actually be performed. First, the automated

decision tool has to provide the controller with a feasible solution. Then, the controller has to process the

solution and then communicate the corresponding instructions to the pilots, before they can execute the

maneuvers.

More formally, let Ti denote the maneuver delay for aircraft i. Ti is decomposed as follows:
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• the time required for the resolution tool to provide the controller with a feasible solution, denoted T s;

• the time during which the controller analyses the solution and communicates it to the different aircraft,

denoted T c;

• the time required for the pilot of aircraft i to execute the communicated maneuver, denoted T pi .

In other words Ti is the sum of a term shared by all aircraft including the solution process and the

controller’s communication, and a term depending on the pilot of i. Figure 2 summarizes the whole process

resulting in the delay.

Lehouillier et al.: Solving the Air Conflict Resolution Problem under Uncertainty as an Iterative bi-Objective MILP
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Figure 2 Structure of the maneuver delay
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2.6. Analytical expressions of the minimum distance and the probability of conflict

2.6.1. Expression of Irvine (2002). In this paragraph, we detail the work presented

by Irvine (2002) which serves as the foundation for the method we use to derive the expression of

the probability of conflict. In his article, Irvine models the global impact of the uncertainties and

the resulting cross and along-track errors, instead of modeling each source of error differently.

Let Ai and Aj be two aircraft flying at a stabilized altitude at speed vi and vj, respectively.

Their trajectories intersect in O with a crossing angle θij. Let xi(t) and xj(t) denote the curvilinear

abscissa at time t of Ai and Aj in a coordinate system centered on O. The distance between the

two aircraft can be computed as follows:

d(t)2 = xi(t)
2 +xj(t)

2− 2xi(t)xj(t) cosθij (12)

If d(t) is replaced by the separation distance required between Ai and Aj, denoted dsep, Equa-

tion (12) defines an ellipse in the coordinate system (O,xi, xj). The aircraft follow straight trajec-

tories at constant speed, hence the set of points (xi(t), xj(t))t≥0
defines a straight line of slope

dxj
dxi

=

dxj
dt
dxi
dt

=
vj
vi

=m (13)

where m is the speed ratio between the two aircraft. If this line intersects the ellipse, then the

aircraft are said to be in conflict. Figure 3 illustrates this condition.

To derive an analytical expression of this condition, the author uses the two tangents of the

ellipse that are parallel to the parametric line (xi(t), xj(t))t≥0
. Their equations are given as follows:

xj =mxi±
dsep

λ
where λ=

sinθij√
m2− 2m cosθij + 1

The minimum distance between Ai and Aj in the deterministic case, denoted dmin, can then be

expressed as a function of the initial curvilinear abscissa of the two aircraft, x0
i and x0

j .

dmin = |λ(x0
j −mx0

i )| (14)

Ai and Aj are in conflict if and only if the minimum distance dmin is strictly less than the

minimum separation distance allowed dsep:

Figure 2: Structure of the maneuver delay
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Figure 3 Ellipse in the coordinate system (O,xi, xj)
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Irvine then considers along-track errors and makes the assumption that within the range of along-

track distances for which conflict is possible, the along-track error is approximately constant and

that the aircraft flies with its predicted speed. This assumption is used to quantify the cumulative

along-track error between t= 0 and the instant where the two aircraft are the closest from each

other in the deterministic case, denoted t= τij, given by

τij =
(x0
j +mx0

i ) cosθij − (x0
i +mx0

j)

||vi||(1− 2m cosθij +m2)
(15)

This value is chosen for τij because the computation of the instant where the two aircraft are the

closest from each other in the stochastic case is hard in practice. Consequently, deriving a handy

formula of the probability of conflict would not be possible. Besides, considering τij is a realistic

assumption, since for the time intervals considered, the difference due to the approximation would

be negligible.

The cumulative along-track error, denoted ∆L(τij), follows a normal distribution N (0, αστij),

where ασ is a constant. This error is applied to the initial position of the aircraft who then evolves

in a entirely deterministic environment. This yields a new expression of the minimum distance in

an uncertain setting, denoted Dmin.

Figure 3: Ellipse in the coordinate system (O, xi, xj)

Ai and Aj are in conflict if and only if the minimum distance dmin is strictly less than the minimum

separation distance allowed dsep:

−dsep < λ(x0
j −mx0

i ) < dsep

Irvine then considers along-track errors and makes the assumption that within the range of along-track

distances for which conflict is possible, the along-track error is approximately constant and that the aircraft
flies with its predicted speed. This assumption is used to quantify the cumulative along-track error between

t = 0 and the instant where the two aircraft are the closest from each other in the deterministic case, denoted

t = τij , given by

τij =
(x0
j +mx0

i ) cos θij − (x0
i +mx0

j )

||vi||(1− 2m cos θij +m2)
(15)

This value is chosen for τij because the computation of the instant where the two aircraft are the closest

from each other in the stochastic case is hard in practice. Consequently, deriving a handy formula of the

probability of conflict would not be possible. Besides, considering τij is a realistic assumption, since for the

time intervals considered, the difference due to the approximation would be negligible.

The cumulative along-track error, denoted ∆L(τij), follows a normal distribution N (0, αστij), where ασ
is a constant. This error is applied to the initial position of the aircraft who then evolves in a entirely

deterministic environment. This yields a new expression of the minimum distance in an uncertain setting,

denoted Dmin.

Dmin = |λ(x0
j + ∆Lj(τij)−mx0

i −m∆Li(τij))| (16)

Dmin is the sum of a deterministic term with the sum of independent random variables. The sum of

independent, normally distributed random variables is also normally distributed, with a mean equal to the
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sum of the means of the individual distributions, and variance equal to the sum of the variances of the

individual distributions. As a consequence, we have that Dmin follows a normal distribution of mean µd and

variance σ2
d where

µd = λ(x0
j −mx0

i ) (17)

σ2
d = (αστ)2(1 +m)2 (18)

Irvine applies a similar reasoning for the impact of cross-track errors, but since we assume that the FMS

compensates for these errors, in our article, we do not give any details about it.

The probability of conflict Pc is given by

Pc = P
(
|λ(x0

j + ∆Lj(τ)−mx0
i −m∆Li(τ))| < dsep

)
(19)

=
1

σd
√

2π

∫ dsep−µd

−dsep−µd
exp

(
− u2

2σ2
d

)
du (20)

= Φ
(dsep − µd

σd

)
− Φ

(−dsep − µd
σd

)
(21)

where Φ is the cumulative distribution function of the standard normal distribution.

2.6.2 Enriching the formula

In this subsection, we modify the formula derived by Irvine by introducing the errors on the wind prediction,

the speed measures, and the delay in the execution of maneuvers. These errors are independent.

We note these cumulative errors ∆Xi(τij) and ∆Xj(τij), respectively. They can be decomposed as follows:

∆Xi(τij) = ∆Wi(τij) + ∆Si(τij) + ∆Di(τij) (22)

∆Xj(τij) = ∆Wj(τij) + ∆Sj(τij) + ∆Dj(τij) (23)

where ∆W., ∆S. and ∆D. denote the cumulative error due to the wind, the speed prediction and the maneuver

delay, respectively. Subsections 2.5.1 and 2.5.2 yield the following expressions for ∆W. and ∆S.:

∆Wi(τij) =
〈W|vi〉
||vi||

τij ∆Si(τij) = Υiτij (24)

∆Wj(τij) =
〈W|vj〉
||vj ||

τij ∆Sj(τij) = Υjτij (25)

where Υi and Υj denote the error due to speed measures for Ai and Aj , respectively.

The cumulative along-track error due to the maneuver delay is slightly more complex to determine. For

the sake of clarity, we give an illustrative example in Figure 4 where two aircraft Ai and Aj flying with a

speed v0
i and v0

j have to perform a heading change of value θi and θj , respectively. They perform these

maneuvers with a delay corresponding to random variables denoted Ti and Tj , respectively.

Figure 4 highlights that the crossing point of the aircraft trajectories was changed due to the delay in

the execution of the maneuvers. As a consequence, there is a difference between the new initial curvilinear

abscissas x̃0
i and x̃0

j and the ones in the deterministic setting x0
i and x0

j . This difference, denoted ∆D0
i and

∆D0
j , is computed as follows:

∆D0
i = Ti||v0

i || − Ti||v0
i || cos θi −

Tj ||v0
j || sin θj

sin θij
− Ti||v0

i || sin θi cos θij
sin θij

(26)

∆D0
j = Tj ||v0

j || − Tj ||v0
j || cos θj −

Ti||v0
i || sin θi

sin θij
−
Tj ||v0

j || sin θj sin θij

sin θij
(27)
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where Υi and Υj denote the error due to speed measures for Ai and Aj, respectively.

The cumulative along-track error due to the maneuver delay is slightly more complex to deter-

mine. For the sake of clarity, we give an illustrative example in Figure 4 where two aircraft Ai and

Aj flying with a speed v0
i and v0

j have to perform a heading change of value θi and θj, respectively.

They perform these maneuvers with a delay corresponding to random variables denoted Ti and Tj,

respectively.

Figure 4 Illustration of a maneuver delay for two aircraft performing heading changes
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Figure 4 highlights that the crossing point of the aircraft trajectories was changed due to the

delay in the execution of the maneuvers. As a consequence, there is a difference between the new

initial curvilinear abscissas x̃0
i and x̃0

j and the ones in the deterministic setting x0
i and x0

j . This

difference, denoted ∆D0
i and ∆D0

j , is computed as follows:

∆D0
i = Ti||v0

i || −Ti||v0
i || cosθi−

Tj||v0
j || sinθj

sinθij
− Ti||v

0
i || sinθi cosθij

sinθij
(26)

∆D0
j = Tj||v0

j || −Tj||v0
j || cosθj −

Ti||v0
i || sinθi

sinθij
− Tj||v

0
j || sinθj sinθij

sinθij
(27)

If t < Ti then Ai has not started its maneuver yet and flies at speed v0
i . If t ≥ Ti then Ai has

flown during Ti at speed v0
i before changing its speed to vi. Since after Ti, aircraft Ai flies at speed

vi like it is supposed to, the cumulative along-track error due to the delay Ti until τij is in fact

cumulated on the interval ]0, Ti]. The value of this error is derived by

∆Di(Ti) = Ti(||v0
i || −vi) (28)

Figure 4: Illustration of a maneuver delay for two aircraft performing heading changes

If t < Ti then Ai has not started its maneuver yet and flies at speed v0
i . If t ≥ Ti then Ai has flown during

Ti at speed v0
i before changing its speed to vi. Since after Ti, aircraft Ai flies at speed vi like it is supposed

to, the cumulative along-track error due to the delay Ti until τij is in fact cumulated on the interval ]0, Ti].

The value of this error is derived by

∆Di(Ti) = Ti(||v0
i || − vi) (28)

Variables ∆Di(τij) and ∆Dj(τij) are derived with

∆Di(τij) = ∆Di(Ti) + ∆D0
i (29)

∆Dj(τij) = ∆Dj(Tj) + ∆D0
j (30)

yielding the following expressions:

∆Di(τij) = 2Ti||v0
i || − Tivi − Ti||v0

i || cos θi −
Tj ||v0

j || sin θj
sin θij

− Ti||v0
i || sin θi cos θij

sin θij
(31)

∆Dj(τij) = 2Tj ||v0
j || − Tjvj − Tj ||v0

j || cos θj −
Ti||v0

i || sin θi
sin θij

−
Tj ||v0

j || sin θj cos θij

sin θij
(32)

To derive the new expression of the minimum distance between aircraft Ai and Aj , we aggregate the

errors ∆Xi(τij) and ∆Xj(τij) into

Dmin =

∣∣∣∣∣λ
(
x0
j + ∆Xj(τij)

)
−m

(
x0
i + ∆Xi(τij

)∣∣∣∣∣ (33)

=

∣∣∣∣∣λ
((
x0
j + ∆Wj(τij) + ∆Sj(τij) + ∆Dj(τij)

)

−m
(
x0
i + ∆Wi(τij) + ∆Si(τij) + ∆Di(τij)

))
∣∣∣∣∣

(34)

We simplify Equation (34) in order to determine an approximation of the distribution of variable Dmin.

In order to derive an analytical expression of the probability, we perform the computation with the

hypothesis of a constant wind, which modifies the along-track speed of an aircraft flying at speed v by a
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factor
〈w|v〉
||v|| . This assumption seems reasonable since the considered intervals of detection and resolution

are quite small and the wind is highly time-correlated. The terms related to the wind then correspond to

∆Wj(τij)−m∆Wi(τij) = Tj
〈W|v0

j 〉
||v0

j ||
+ (τij − Tj)

〈W|vj〉
vj

−m
(
Ti
〈W|v0

i 〉
||v0

i ||
+ (τij − Ti)

〈W|vi〉
||vi||

) (35)

We approximate Ti and Tj by the mean of their distribution µTi and µTj in the quadratic terms, in

order to find the analytical expression of the probability of conflict. This approximation is acceptable,

since in Section 5 we use a distribution of Ti where the standard deviation is small compared to the mean.

Equation (35) can be rewritten:

∆Wj(τij)−m∆Wi(τij) =
〈
W
∣∣∣µTj

v0
j

||v0
j ||

+ (τij − µTj )
vj
||vj ||

−mµTi
v0
i

||v0
i ||
−m(τij − µTi)

vi
||vi||

〉 (36)

= 〈W|u〉 (37)

The terms involving the error on speed prediction can be simplified into

∆Sj(τij)−m∆Si(τij) = Υjτij −mΥiτij (38)

= τij(Υj −mΥi) (39)

The terms related to the maneuver delay correspond to

∆Dj(τij)−m∆Di(τij) = rjTj −mriTi (40)

where

rj = ||vj || − ||v0
j || cos θj +

||v0
j || sin θj
tan θij

+
m||v0

j || sin θj
sin θij

ri = ||vi|| − ||v0
i || cos θi +

||v0
i || sin θi

tan θij
+
||v0

i || sin θi
m sin θij

Equations (35), (39) and (40) yield a simplified expression for Dmin:

Dmin =
∣∣∣λ(x0

j −mx0
i ) + λ

(
(Υj −mΥi)τij + rjTj −mriTi + 〈W|u〉

)∣∣∣ (41)

Equation (41) expresses Dmin as a deterministic term λ
(
x0
j −mx0

i

)
, added with the sum of the following

independent random variables

• (Υj −mΥi)τij ∼ N (0, (1 +m)σΥτij);

• rjTj ∼ N (rjµTj , rjσTj ) ;

• −mriTi ∼ N (−mriµTi ,mriσTi);
• 〈W|u〉 ∼ N (0, σW||u||).

Dmin follows a normal distribution of mean µD and variance σ2
D given by

µD = λ
(
(x0
j + rjµTj )−m(x0

i +mriµTi)
)

(42)

σ2
D = λ2

(
σ2

Υ(1 +m)2τ2
ij + (mriσTi)

2 + (rjσTj )
2 + (σW||u||)2

)
(43)
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The probability of Ai and Aj being in conflict corresponds to the probability of the event |Dmin| < dsep:

P(|Dmin| < dsep) = P (−dsep < Dmin < dsep)

= Φ
(dsep − µD

σD

)
− Φ

(−dsep − µD
σD

)

3 Deterministic model

In this section, we describe the resolution method developed by Lehouillier et al. (2015b,a) that will serve as a

foundation for the optimization procedure presented in Section 4. The main idea is to model the CR problem

as a maximum clique of minimum weight problem. To this end, we build a graph whose vertices represent

maneuvers for the different aircraft, and where edges link conflict-free maneuvers of different aircraft. A

maximum clique of minimum weight yields a conflict-free situation of minimal cost.

The advantage of this process is that it fully separates the modeling of aircraft dynamics, the separation

verification and the costs computations from the resolution: whatever the hypotheses considered, and in

particular taking into account uncertainties, the proposed mathematical framework will remain valid. The

remainder of this section highlights the key elements of modeling and resolution of the model.

3.1 Graph construction

In this subsection, we introduce the conflict graph G = (V, E) used to model the CR problem.

The set of vertices is defined as V = J1; |M|K, where M denotes the set of possible maneuvers for all

aircraft. We denote Vf the set of vertices corresponding to aircraft f .

Let (i, j) ∈ V × V be a pair of vertices representing maneuvers (mi,mj) ∈ M×M of aircraft (fi, fj) ∈
F×F . For i 6= j, we write mi2mj when no conflict occurs if aircraft fi follows maneuver mi while aircraft fj
performs maneuver mj . The set of edges E corresponds to the pairs of maneuvers performed by two different

aircraft without creating conflicts:

E = {(i, j) ∈ V × V, i 6= j : mi2mj} (44)

Proposition 1(Lehouillier et al. (2015b)) links the cliques in G to the CR problem:

Proposition 1 Let C be a clique in graph G. Then C represents a set of conflict-free maneuvers for a subset

of F of cardinality |C|.

For a more synthetic presentation, we consider in this subsection that maneuvers and vertices are equiv-

alent without loss of generality. As explained in the previous subsection, the cost of a maneuver depends

on its execution, which itself varies with the maneuvers of the other aircraft. As a consequence, we need to

define the cost of the edges before the cost of the vertices.

Again, for ease of presentation, an edge e = (i, j) is considered as a pair of maneuvers. We compute the

cost of an edge e = (i, j) as a pair constituted of the cost of maneuvers i and j, denoted C
(i,j)
i and C

(i,j)
j .

Let us consider a maneuver i. The cost of each edge linking i to another maneuver j corresponds to an

execution time tji which is the minimum time during which i and j have to be executed before a safe return

can be performed by at least one of the corresponding aircraft.

To determine the cost of i, denoted ci, we need to compute the time ti during which it is actually applied.

If i is not in the optimal solution, then ti = 0. Otherwise, ti is given by

ti = max
j∈V∩C

tji (45)
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Equation (45) states that maneuver i has to be applied long enough in order to be conflict-free with every

other chosen maneuver. As a consequence, we can determine ci:

ci =





max
j∈V∩C

C
(i,j)
i if i ∈ C

0 otherwise

3.2 MILP formulation

In our model the costs of the vertices are not determined a priori, since they depend on which vertices are in

the clique. As a consequence, the dedicated algorithms of existing graph theory libraries cannot be used in

this study. To address this issue, we formulate our problem as a MILP that can be solved with any generic

MILP solver.

The decision variables of the model all relate to the vertices of the graph. They correspond to the choice

of the vertices in the clique and the cost of each vertex:

• xi =

{
1 if vertex i is part of the maximum clique

0 otherwise

• ci ∈ R+ is the cost of vertex i.

The clique search can then be modeled as the following MILP, denoted MIP :

minimize
∑

i∈V
ci (46)

subject to xi + xj ≤ 1,∀(i, j) ∈ V × V \ E (47)
∑

i∈V
xi = |F| (48)

ci ≥ C(i,j)
i (xi + xj − 1),∀(i, j) ∈ E (49)

xi ∈ {0; 1},∀i ∈ V (50)

ci ≥ 0,∀i ∈ V (51)

The objective function (46) minimizes the cost of the maneuvers. Constraints (47) are clique constraints

stating that two nonadjacent vertices must not be part of the clique. In terms of conflict resolution, it means

that two maneuvers in conflict must not be part of the solution. Constraint (48) defines the cardinality of

the maximum clique. Constraints (49) are used to compute the cost of the vertices: if a vertex is in the

maximum clique, then its cost must be greater than the cost on every edge connecting it to other vertices

in the clique. Otherwise, no particular constraint is imposed on the vertex cost. Constraints (50)–(51) are

binarity and nonnegativity constraints, respectively.

3.3 Inserting uncertainties into the deterministic model

In this subsection, we explain how the expression of the probability of conflict between two aircraft derived

in Subsection 2.6 is used to modify the deterministic model presented in this section.

An edge exists between two maneuvers if they are conflict-free. In other words, if the probability of

conflict associated with these maneuvers is 0. If they are in conflict (i.e if the probability of conflict was 1),

then no edge is drawn between the corresponding vertices. To take into account the uncertainties, we change

the necessary condition to build an edge.

The set of edges E is defined by

E = {(i, j) ∈ V × V, i 6= j : Pc(i, j) < δs} (52)
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where δs is a security threshold restricting the set of possible maneuvers. δs represents an upper bound on

the probability that a conflict remains after the maneuvers are issued. We remind here that a remaining

conflict will always be solved: the controller will issue another set of maneuvers. In other words, δs can be

regarded as an upper bound on the probability that the controller uses a recourse to solve the problem once

again.

This adaptation of the deterministic setting makes a good pairing with the expression computed in

Subsection 2.6. Indeed, when the set of possible maneuvers becomes very large, the number of probabilities

to compute would require a huge computational effort if they were determined through simulation, whereas

with our approach, we determine these values instantaneously.

4 Bi-objective optimization procedure

In this section, we detail the bi-objective approach designed to solve the problem. This method optimizes

the CR problem according to two criteria depicting the efficiency and the probability of having recourse

related to a solution. It iteratively solves the model MIP according to the first criterion, while imposing a

certain improvement on the second criterion between two consecutive resolutions. Each resolution results in

a solution approximating the Pareto front of the problem. In the end, the method provides the air traffic

controller with a set of solutions corresponding to different trade-offs between efficiency and probability of

using a recourse.

4.1 Optimization criteria

The first criterion of optimization corresponds to the objective function of the mathematical program MIP

presented in Section 3:

ze =
∑

i∈V
ci (53)

This objective is the total amount of additional fuel burnt induced by the chosen maneuvers, and represents

the aspect of a solution related to its economical efficiency. Indeed, it is an indicator on the perturbation of

the planned trajectories and gives an insight into the effort required to catch up with the initial flight plan

after the maneuver is performed. In addition to the perturbation of the set of aircraft itself, this criterion

also illustrates the perturbation on surrounding traffic.

The second criterion is given by

zs =
∑

i∈V

∑

j∈V
j 6=i

Pijxixj (54)

where Pij is the probability of conflict of maneuvers i and j, and xi and xj are the decision variables

corresponding to whether or not maneuvers i and j are chosen. Value zs corresponds to the expected number

of conflicts potentially remaining after the solution is applied. This is a relevant measure for the controller

as it gives an idea of the potential additional effort required to solve the problem once again in the close

future. The higher zs is, the higher the probability of re-issuing avoidance maneuvers will be. Variable zs
represents an indicator of the additional workload and cognitive charge that will potentially be required in

order to definitely solve the problem.

To keep the expression of zs linear in the decision variables, we apply Fortet’s linearization Fortet (1960).

We introduce a new set of binary variables yij respecting the following constraints:

yij ≤ xi,∀i ∈ V,∀j ∈ V (55)

yij ≤ xj ,∀i ∈ V,∀j ∈ V (56)

yij ≥ xi + xj − 1,∀i ∈ V,∀j ∈ V (57)
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yielding a new expression of zs.

zs =
∑

i∈V

∑

j∈V
Pijyij (58)

Algorithm 1 describes the mechanics of the iterative procedure. The user-defined parameters are the

security threshold δs used to build the conflict graph, and an improvement thresholds δ2 for the second

criterion, respectively. The algorithm starts by solving the program MIP : it finds the optimal solution for

the first criterion of value ze. We compute zs the value of this solution for the second criterion. The point

(ze, zs) is a Pareto-optimal point, since it is globally optimal for the first criterion. The value of p is then

used to add the constraint (59) to MIP :

∑

i∈V

∑

j∈V
Pijyij ≤ p− δi (59)

Constraint (59) simply reflects the minimum improvement required on the second criterion. The value of

the parameter δi can be considered as a factor of granularity of the Pareto front. MIP is then solved once

again, and the values of the two criteria are updated. The algorithm continues until the value of the second

criteria becomes smaller than the threshold pf .

Algorithm 1 Iterative bi-objective optimization procedure (IBIOP)

1: procedure IBIOP(δs, pf , δi)
2: Input: Set of aircraft F , set of maneuvers M
3: Parameters: security thresholds δs, pf , improvement threshold δi
4: Build the conflict graph according to F , M and δs
5: ze ← +∞, zs ← +∞
6: Solve MIP
7: ze ← optimal value of MIP
8: zs ← value of second criterion for optimal solution of MIP
9: while zs ≥ pf do

10: Add constraint
∑

i∈V

∑

j∈V
Pijyij ≤ p− δi to MIP

11: Solve MIP
12: ze ← optimal value of MIP
13: zs ← value of second criterion for optimal solution of MIP

5 Results

This section is organized as follows. Subsection 5.1 describes the values assigned to the different parameters

for the experiments. Subsection 5.2 tests the validity of the assumptions made in the computations in

Subsection 2.6. Computational results are detailed in Subsection 5.3. Subsection 5.4 provides a quantitative

analysis of a Pareto front for a particular example.

5.1 Parameter values and simulations of the uncertainties distributions

In this subsection, we define the values assigned to the different parameters of the random variables dis-

tributions, and we describe the methods used to generate the random samples used for the Monte-Carlo

simulations.

5.1.1 Parameter values of the uncertainties distributions

We give the values assigned to the parameters of the distributions of the uncertainties.
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Probability distribution of the wind: The simulated wind follows a zero-mean normal distribution of

standard deviation σW = 5.4kt, according to the model described in Chaloulos and Lygeros (2007).

Probability distribution of the error on speed prediction: We follow the model presented in Chaloulos and

Lygeros (2007), where the error on speed prediction is a zero-mean normal variable of standard deviation

σΥ = 7.9kt.

Probability distribution of the maneuver delays: As no data on these delays exist to our knowledge, we

interviewed an experienced air traffic controller to obtain an insight into what those values could be. As a

result, we decided to use the following values:

• T c + T s ∼ N (µT c,s , σT c,s) where µT c,s = 30 seconds and σT c,s = 10 seconds;

• ∀i ∈ F , T pi ∼ N (µTpi , σT
p
i

) where µTpi is a random variable uniformly distributed between 20 and 40

seconds, and σTpi = 10 seconds;

5.1.2 Monte-Carlo simulations

For the simulation of aircraft trajectories, we generate random values for the wind according to the method

developed by Lymperopoulos (2010). The author performs a time and space discretization of the wind field,

and iteratively computes at each time step the wind values at point of the grid according to the wind values

computed at the previous time step, using correlation functions. The values of the normal distribution

for the error on speed prediction and on the maneuver delay are generated according to the Box-Muller

method described in Rubinstein and Kroese (2011), which simulates centered normal random variables using

uniformly distributed random variables.

5.2 Validating the calculus through simulations

In this subsection, we validate the assumptions made in Subsection 2.6, by checking the validity of the

approximation of the probability of conflict derived in Subsection 2.6 by comparing it to the probability

obtained through simulations.

To this end, we study a test case representing a conflict situation with two aircraft i and j crossing

each other with an angle θ (the set of values for theta is {60◦; 90◦; 120◦}). To avoid the conflict, they start

their maneuver at 100NM from the crossing point of their trajectories. We designed different scenarios

corresponding to a couple of maneuvers (Mi,Mj) consisting in either speed or heading changes. The speed

maneuvers range from -6% to 6% with a 1% step and the heading changes range from −10◦ to 10◦ with a 1◦

step. In total, we have 545 scenarios. For each scenario, 2000 independent random samples are generated.

To validate the approximation of the probability of conflict derived in Subsection 2.6, for each scenario

we computed the value of the approximated probability of conflict, and we simulated 2000 random scenario

samples to estimate the probability of conflict. The same process was performed for the minimum distance

between the two aircraft.

Table 1 highlights that the average simulated minimum distance is close to the computed one. Depending

on the type of maneuver and the crossing angle, it ranges from 0.05 NM to 0.16 NM. The variance is really

small, meaning that the difference between the two distances is usually close to the mean. Probabilities of

conflict computed and simulated are almost identical, with a difference always under 1% for the considered

instances, meaning that the expression derived in Subsection 2.6 is a really good approximation of the

simulated probability.

Figure 5 highlights the results of Table 1 graphically, and focuses on two aircraft crossing with an angle of

90◦ and performing heading changes to avoid the conflict. Figure 5a compares the average of the computed

distribution of the minimum distance with the average minimum distance simulated. Figure 5b compares

the computed and simulated probability of conflict. Scenarios are sorted on the horizontal axis following

decreasing values of the compared quantities. The plotted functions are stepwise, because the difference in
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Table 1: Comparison of the simulation results and the calculus for the minimum distance and the probability
of conflict

Configuration Difference of Difference of
separation distance probabilities

Maneuvers Crossing Absolute Variance Mean Variance
angle (◦) Mean (NM) (NM) (%)

H/H 60 0.09 0.01 0.68 0.02
H/H 90 0.10 0.02 0.70 0.01
H/H 120 0.13 0.01 0.61 0.04

S/H 60 0.16 0.01 0.80 0.03
S/H 90 0.12 0.01 0.72 0.12
S/H 120 0.11 0.01 0.50 0.14

S/S 60 0.05 0.01 0.62 0.02
S/S 90 0.16 0.03 0.66 0.04
S/S 120 0.14 0.01 0.66 0.11
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4
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Random benchmark. This benchmark consists of random instances, where aircraft are uniformly

distributed within a square sector with side length 50NM. To avoid generating infeasible instances,

we perform a preprocessing before solving the problem: for each pair of aircraft that will loose

separation within the first 30 seconds of observation, we randomly delete one of the aircraft.

For a desired number of aircraft, we generate 15% more aircraft to anticipate the effect of the

preprocessing. If more aircraft than desired remain after the preprocessing, extra aircraft are then

randomly removed until the number is reached.
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maneuver magnitudes from one scenario to the other are discrete, which has a significant impact on the

minimum distance and the resulting probability of conflict.

5.3 Computational results

5.3.1 Benchmark description

Structured benchmark This benchmark gathers three types of instances. The first set is roundabout in-

stances Rn, where n aircraft are distributed on the circumference of a 100NM radius and fly towards the

center at the same speed and altitude. The second set is crossing flow instances Fn,θ,d, where two trails of n

aircraft separated by d nautical miles intersect each other with an angle θ. The last type of instance is a grid

Gn,d constituted of two crossing flow instances Fn,π2 ,d with a 90◦ angle, one instance being translated 15NM

North-East from the other. Aircraft considered for the conducted experiments are Airbus A-320 flying at

450 kt on flight level FL330. An example of these instances is given on Figure 6.
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distributed within a square sector with side length 50NM. To avoid generating infeasible instances,

we perform a preprocessing before solving the problem: for each pair of aircraft that will loose
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(c) Grid G3,10

Figure 6: Examples of instances of the benchmark

Random benchmark. This benchmark consists of random instances, where aircraft are uniformly distributed

within a square sector with side length 50NM. To avoid generating infeasible instances, we perform a pre-

processing before solving the problem: for each pair of aircraft that will loose separation within the first 30

seconds of observation, we randomly delete one of the aircraft. For a desired number of aircraft, we generate

15% more aircraft to anticipate the effect of the preprocessing. If more aircraft than desired remain after the

preprocessing, extra aircraft are then randomly removed until the number is reached.

5.3.2 Computational results

All tests were performed on a computer equipped with the following hardware: Intel Core i7-3770 processor,

3.4 GHz, 8-GB RAM. The algorithms were implemented in C++ and relies on CPLEX 12.5.1.0 CPL (2014)

with default options to solve every instance. For instances with up to 10 aircraft, heading changes range

from −10◦ to 10◦ with a 2◦ step. For instances with more than 10 aircraft, the possible heading changes are

±5◦, ±10◦, ±15◦ and ±20◦. In addition, aircraft can also perform speed changes of ±3% and ±6%. The

parameters of the IBIOP procedure were assigned the following values:

• security threshold for a maneuver δs = 5%;

• improvement threshold for safety δi = 1%;

• the stopping criterion pf ≤ 1%.

Table 2 gathers information about the instance dimensions, the generated solutions and computational

results. The headings are given as follows:

• |F|: number of aircraft;

• |V|: number of vertices;

• |E|: number of edges;

• 1sol : first generated solution of the Pareto front, expressed as the pair (c1, c2) of the values of the two

criteria, where c1 is expressed in kilograms of fuel and c2 is the expected number of conflicts;

• Lsol : last generated solution of the Pareto front, expressed as the pair (c1, c2) of the values of the two

criteria, where c1 is expressed in kilograms of fuel and c2 is the expected number of conflicts;

• T r : resolution time (in seconds);

• Nbp : number of generated solutions of the Pareto front.

First, we observe that all the instances met the stopping criteria, yielding solutions with less than 0.01

expected conflicts. Results highlight that for instances with less than 10 aircraft, the solution time stays

shorter than 30 seconds while on average 5 different solutions are generated. This achievement is meaningful
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Table 2: Computational results

Instance size Solutions explored Resolution

|F| |V| |E| 1sol Dsol T r Nbp

R4 4 60 571 (12.26 ; 0.053) (15.19 ; 0.005) 0.67 2
R6 6 90 1296 (32.12 ; 0.107) (44.46 ; 0.009) 6.69 7
R8 8 120 2256 (77.04 ; 0.0917) (100.7 ; 0.008) 8.58 8
R10 10 110 2647 (151.9 ; 0.072) (252.3 ; 0.008) 11.69 5
R12 12 156 6215 (337.6 ; 0.184) (370.3 ; 0.007) 24.17 4
R16 16 208 10924 (562.2 ; 0.137) (914.8 ; 0.008) 139.7 11

F1,60,10 2 30 83 (5.85 ; 0.035) (9.13 ; 0.001) 0.09 2
F2,60,10 4 60 717 (20.73 ; 0.037) (21.79 ; 0.002) 1.26 2
F4,60,10 8 120 3543 (55.90 ; 0.045) (59.48 ; 0.009) 7.46 2
F6,60,10 12 156 6027 (134.7 ; 0.023) (137.6 ; 0.008) 42.92 2

G2,10 8 120 3690 (73.15 ; 0.078) (90.20 ; 0.008) 30.9 5
G3,10 12 156 11034 (382.8 ; 0.020) (480.1 ; 0.007) 82.89 4

U15 15 195 6940 (14.42 ; 0.0512) (22.15 ; 0.002) 45.12 4
U25 25 325 12313 (65.07 ; 0.014) (89.24 ; 0.004) 7.46 2
U35 35 455 33127 (89.15 ; 0.021) (120.05 ; 0.009) 130.02 2

for the air traffic controller, since he/she is able to access a small set of different solutions within a short

period of time. For instances with more than 10 aircraft, solution times tend to slightly increase to reach up

to two and a half minutes to generate 9 solutions (instance R16). Even though it seems far from real-time,

the advantage of our procedure is that it generates solutions on the fly, meaning that the controllers has at

least one or two possible solutions within the first seconds of the resolution if he/she needs to act quickly.

Those solutions have a higher probability of using a recourse, but by concept it gives to the controller a

certificate that at least each pair of aircraft has less than 5% chances of needing another avoidance maneuver

in the future. An observation worth mentioning is that the total solution time is closely linked to the value

of the security threshold δs and the stopping criterion. Indeed, their values will mostly influence the number

of generated Pareto-front solutions. Moreover, for the experiments we choose to have a large set of possible

maneuvers for each aircraft, which also has an impact on the solution time. A smaller set of maneuvers would

result in a shorter execution time, especially if we delete the largest maneuvers, which represent the vertices

with higher degrees. Indeed, those nodes have an impact on the number of cliques and on the search of a

maximal clique of minimum weight.

5.4 Quantitative analysis of a solution set

We now focus on the solutions generated by our procedure applied to the instance depicted on Figure 7. One

aircraft intersects a train of two aircraft separated by 20 NM. The algorithm parameters were identical to

the ones for the other tests.

In order to get an insight into the effect of considering uncertainties on the chosen maneuvers, we remind

that the deterministic solution is worth 5.54 kilograms of fuel. The generated solutions during the resolution

are displayed on Figure 8. The first solution (6.66; 0.35), was computed in 0.29 seconds. Every half second,

a new solution is generated until the eighth and last one (47.47; 0.009) which was computed in 6.22 seconds.

We can divide the generated solutions into two clusters, depending on their geometrical characteristics.

The first cluster includes the first five generated solutions, where the blue aircraft flies between the two

others, as evidenced on Figure 9a. Figure 9b describes the second cluster including the last three generated

solutions. The blue aircraft performing a heading change, while the two others slow down.

The interpretations of these results are two-fold. First, it shows that there is a discontinuity in the

geometry of the generated solutions, instead of having the same pattern repeated with a different magnitude.

Second, it provides the controller with a visual outlook of the solutions, and he/she can easily identify which

ones will be easier to communicate, or which ones will be the more robust.
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Depending on the preferences of the controller, the quality of the solution will differ regarding

one criterion or the other. For instance, if the controller aims at efficiency, he/she will apply the

solution costing 6.66 kilograms of fuel, but where in 35% of the scenarios he/she will need to issue

new maneuvers in order to ensure separation. If he/she aims at saving potential workload, he/she

will choose a solution with less than 1% chances of having to re-issue maneuvers, but costing 47.47
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6. Conclusions

In this article, we tackled the air conflict resolution problem under uncertainty. With our work,

we provide the controller with a decision analysis tool generating a set of solutions representing

different trade-offs between several criteria. The model is robust, since we consider a large span

of uncertainties, including errors due to the wind, the imprecision of speed prediction. We also

presented a new type of uncertainty: the delay in the execution of maneuvers. As a consequence,

we cover a large part of the possible uncertainties that can arise during a conflict resolution. We

computed the conflict probabilities and integrated them within an optimization model which is

flexible, since it fully separates the modeling from the resolution process. Hence, the underlying

mathematical framework remains valid, whatever the hypotheses considered. We focused on two

objective that are relevant for conflict resolution, namely the extra fuel consumption, which serves

as a performance index, and the expected number of conflicts, which serves as an indicator of

potential additional workload required to re-issue avoidance maneuvers. We solve the problem by

iteratively solving the aforementioned model, hence taking advantage of its power. Each resolution

generates a solution of the Pareto front of the problem. At the end of the simulation run, the

controller has a set of solutions where he can choose the one to apply, depending on the context

and its preferences.

Monte-Carlo simulations validated the theory, and intensive simulations highlighted interesting

results. Complex instances with up to 20 aircraft are solved within seconds, and an average of 5

different solutions are generated within two minutes.
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Depending on the preferences of the controller, the quality of the solution will differ regarding one criterion

or the other. For instance, if the controller aims at efficiency, he/she will apply the solution costing 6.66

kilograms of fuel, but where in 35% of the scenarios he/she will need to issue new maneuvers in order to

ensure separation. If he/she aims at saving potential workload, he/she will choose a solution with less than

1% chances of having to re-issue maneuvers, but costing 47.47 kilograms of fuel. If his/her preferences are

more mixed, he/she still has six other possible solutions that he can choose.

6 Conclusions

In this article, we tackled the air conflict resolution problem under uncertainty. With our work, we provide the

controller with a decision analysis tool generating a set of solutions representing different trade-offs between

several criteria. The model is robust, since we consider a large span of uncertainties, including errors due

to the wind, the imprecision of speed prediction. We also presented a new type of uncertainty: the delay

in the execution of maneuvers. As a consequence, we cover a large part of the possible uncertainties that

can arise during a conflict resolution. We computed the conflict probabilities and integrated them within an

optimization model which is flexible, since it fully separates the modeling from the resolution process. Hence,

the underlying mathematical framework remains valid, whatever the hypotheses considered. We focused

on two objective that are relevant for conflict resolution, namely the extra fuel consumption, which serves

as a performance index, and the expected number of conflicts, which serves as an indicator of potential

additional workload required to re-issue avoidance maneuvers. We solve the problem by iteratively solving

the aforementioned model, hence taking advantage of its power. Each resolution generates a solution of the

Pareto front of the problem. At the end of the simulation run, the controller has a set of solutions where he

can choose the one to apply, depending on the context and its preferences.

Monte-Carlo simulations validated the theory, and intensive simulations highlighted interesting results.

Complex instances with up to 20 aircraft are solved within seconds, and an average of 5 different solutions

are generated within two minutes.

Further research will focus on the extension of the method to aircraft with changing altitudes, in order

to consider a bigger variety of problems. A rolling-horizon procedure will also be the center of new research,

allowing us to run continuous simulations of real-life data sets.
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Fortet, R. 1960. Applications de l’algèbre de Boole en recherche opérationelle. Revue Française de Recherche
Opérationelle 4(14), 17–26.

Irvine, R. 2002. A geometrical approach to conflict probability estimation. Air Traffic Control Quarterly 10(2), 85–113.

Joint Planning and Development Office. 2008. Next gen air transportation system integrated work plan, technical
report. Tech. rep.

Lehouillier, T., J. Omer, F. Soumis, C. Allignol. 2014. Interactions between operations and planning in air traffic
control. Proceedings of the 2nd International Conference of Research in Air Transportation, Istanbul .

Lehouillier, T., J. Omer, F. Soumis, G. Desaulniers. 2015a. A flexible framework for solving the air conflict detection
and resolution problem using maximum cliques in a graph. Proceedings of the Eleventh USA/Europe Air Traffic
Management Research and Development Seminar (ATM2015), Lisboa, Portugal.

Lehouillier, T., J. Omer, F. Soumis, G. Desaulniers. 2015b. A new variant of the minimum-weight maximum-cardinality
clique problem to solve conflicts between aircraft. Hoai An L.T., P.D. Tao, N.T. Nguyen, eds., Modelling, Computa-
tion and Optimization in Information Systems and Management Sciences, Advances in Intelligent Systems and Com-
puting, vol. 359. Springer International Publishing, 3–14. http://dx.doi.org/10.1007/978-3-319-18161-5_1.

Lygeros, J., M. Prandini. 2002. Aircraft and weather models for probabilistic collision avoidance in air traffic control.
IEEE Conference on Decision and Control, vol. 3. IEEE; 1998, 2427–2432.

Lymperopoulos, I. 2010. Sequential monte carlo methods in air traffic management. Ph.D. thesis, Diss., Eidgenössische
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