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Abstract

In this article, we tackle the conflict resolution problem using a new variant of the
minimum-weight maximum-clique model. The problem involves identifying maneuvers
that maintain the required separation distance between all pairs of a set of aircraft while
minimizing fuel costs. We design a graph in which the vertices correspond to a finite set of
maneuvers and the edges connect conflict-free maneuvers. A maximum clique of minimal
weight yields a conflict-free situation that involves all the aircraft and minimizes the costs
induced. The innovation of the model is its cost structure: the costs of the vertices cannot
be determined a priori, since they depend on the vertices in the clique. We formulate the
problem as a mixed integer linear program. Since the modeling of the aircraft dynamics
and the computation of trajectories is separated from the solution process, the model is
flexible. As a consequence, our mathematical framework is valid for any hypotheses. In
particular, the aircraft can perform dynamic velocity, heading, and flight-level changes. To
solve instances involving a large number of aircraft spread over several flight levels, we
introduce two decomposition algorithms. The first is a sequential mixed integer linear
optimization procedure that iteratively refines the discretization of the maneuvers to yield a
trade-off between computational time and cost. The second is a large neighborhood search
heuristic that uses the first procedure as a subroutine. The best solutions for the available
set of maneuvers are obtained in less than 10 seconds for instances with up to 250 aircraft
randomly allocated to 20 flight levels.

Keywords: Air Traffic Control, Conflict Resolution , Mixed Integer Linear Optimization ,
Graph Theory , Decomposition Methods
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1 Introduction

1.1 Context: Challenges of air traffic control

In recent years air traffic management (ATM) has attracted increasing attention, and research
has focused on advanced decision algorithms. Such automated tools will be key components
of future ATM systems such as the Single European Sky ATM Research (SESAR) SESAR Joint
Undertaking (2012) project in Europe and the Next Gen Joint Planning and Development Office
(2008) program in the United States. Optimization algorithms for air traffic control (ATC) are
particularly relevant in the current context of growing traffic, where airspace capacity and
safety become concerns. The latest long-term forecast from EUROCONTROL predicts that
traffic demand will increase by 20% to 80% between 2012 and 2035 EUROCONTROL (2013).
A simulation-based study performed by Lehouillier et al. Lehouillier et al. (2014) shows that
for a 50% increase in traffic, the controllers in charge of busy sectors would have to resolve an
average of 27 conflicts per hour. Decision tools are essential in such an environment.

1.2 Literature review

A fundamental challenge of ATC is the air conflict resolution (CR) problem. A conflict occurs
when two aircraft fail to respect predefined horizontal and vertical separation distances of
respectively 5 NM and 1000 ft, as illustrated in Figure 1. To resolve conflicts, the controllers
impose speed, heading, or altitude-change maneuvers. Given the current position, speed,
acceleration, and predicted trajectory of a set of aircraft, the CR problem consists in identifying
the conflict-free maneuvers that minimize a given cost function.

Figure 1: Safety cylinder around an aircraft.

5NM

1000 ft

The CR problem has been widely studied. We provide a synthesis of the studies that had
the greatest influence on our work; a more complete literature review may be found in Martı́n-
Campo’s thesis Martı́n-Campo (2010). Because aircraft trajectories are time-continuous, the most
natural approach is to model the problem using optimal control Zhou et al. (1996). Analytical
solutions can be found for only the simplest cases, but the models can be solved numerically
using nonlinear programming techniques. For instance, Raghunathan et al. Raghunathan et al.
(2004) use a time discretization of the problem to derive solutions for instances with more than
two aircraft. One difficulty is that the nonlinear program (NLP) is nonconvex, so the global
optimum cannot be found in a reasonable time and the solution is sensitive to the starting point.

Several heuristics have been developed to find feasible solutions quickly. Durand et al. Du-
rand et al. (1996) and Meng and Qi Meng and Qi (2012) develop ant colony algorithms, where
maneuvers are chosen from a finite discrete set of heading changes performed at constant speed.
Alonso-Ayuso et al. Alonso-Ayuso et al. (2014) adapt a variable neighborhood search algorithm
and consider only heading changes. Other methods use maneuvers extracted from a prescribed
set Vivona et al. (2006), particle swarm optimization (see Gao et al. Gao et al. (2012) for heading
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changes), or neural networks (see Durand et al. Durand et al. (2000) and Christodoulou and
Kontegeorgous Christodoulou and Kodaxakis (2006) for speed changes). These methods are
fast, but convergence is not guaranteed.

Mixed integer linear and nonlinear programming provide powerful theoretical frameworks
for CR. With the realistic restriction that the aircraft perform at most one maneuver at the
initial time, Pallottino et al. Pallottino et al. (2002) exploit the geometry of the separation
constraints to develop two mixed integer linear programs (MILPs) that allow either a speed
change with a constant heading or a heading change with a constant speed. Vela et al. Vela
et al. (2011) develop an MILP that allows both speed and heading changes, and Christodoulou
and Costoulakis Christodoulou and Costoulakis (atia) describe a nonlinear model for three-
dimensional CR. The MILP of Alonso-Ayuso et al. Alonso-Ayuso et al. (2011) allows both
velocity and altitude changes. In Alonso-Ayuso et al. (2012), Alonso-Ayuso et al. extend the
model of Pallottino et al. (2002) by replacing the instantaneous speed changes with continuous
changes. Schouwenaars Schouwenaars (2006) and Omer and Farges Omer and Farges (2013)
use a time-based discretization of the optimal control formulation. Vela et al. Vela et al. (2009)
and Omer Omer (2015) develop MILPs with a space discretization that focus on the main points
of interest of the CR.

In the ATM field, graph theory has primarily been used for air traffic flow management
(ATFM) Bertsimas and Patterson (1998, 2000). In ATC, conflicts between aircraft are generally
modeled by a graph in which the vertices represent the different aircraft and the edges link
pairs of conflicting aircraft. Vela Vela (2011) and Sherali et al. Sherali et al. (2002) use conflict
graphs in their models. Resmerita et al. Resmerita et al. (2003) study a priori CR by developing
a multi-agent system where each aircraft must choose a path in a resource graph in which
the vertices represent zones of the airspace and where the chosen paths must be conflict-free.
Barnier and Brisset Barnier and Brisset (2004) assign different flight levels to aircraft with
intersecting routes by looking for maximum cliques in a graph defining an assignment of all
the aircraft to a set of given flight levels.

1.3 Contribution statement

We present a formulation of the CR problem as a variant of the minimum-weight maximum-
cardinality clique (MWMCC) problem. A preliminary study is presented in Lehouillier et al.
(2015b,a). We design a graph in which the vertices represent possible aircraft maneuvers and
the edges link conflict-free maneuvers of different aircraft. The innovation of this model is its
cost structure. The costs of the vertices are not known a priori since they depend on which
maneuvers are in the clique. The model is flexible because it separates the solution process from
the modeling of the aircraft dynamics and their maneuvers. As a consequence, our mathematical
framework remains valid for any hypotheses on the aircraft dynamics and maneuvers, the
computation of the separation distances, and the cost evaluation. This feature highlights its
robustness, which is important in ATC because we must resolve many conflicts.

We have made several significant improvements to the model in Lehouillier et al. (2015b,a).
First, we have corrected the cost computation. Second, our key contribution is that we have
developed two decomposition algorithms to address the explosion of the number of vertices that
occurs in large instances. The first algorithm is a sequential mixed integer linear optimization
(SMILO) procedure that iteratively refines the discretization of the set of maneuvers without
changing the number of vertices in the graph. This yields a trade-off between computational
time and the cost of the optimal solution. This procedure is then used as a subroutine in a
spatial decomposition that takes advantage of the geometric structure of the instances. The
spatial decomposition is a large neighborhood search metaheuristic that exploits the weak
interdependency between subsets of aircraft. Finally, we have tested our model on an extended
benchmark that includes the structured instances with up to 20 aircraft described in Lehouillier
et al. (2015b,a), and random instances with up to 60 aircraft on a single flight level and 250
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aircraft over several flight levels. The results show that automated CR can be performed in a
few seconds for large and dense areas of the airspace.

2 Problem Formulation

In this section, we discuss the modeling of the aircraft dynamics and maneuvers, the compu-
tation of the separation distances, and the cost evaluation. The choices made in this section
represent a possible modeling of the problem. However, they are independent of the solution
method, so considering other possibilities would not impact the validity of our overall method.

2.1 Modeling of aircraft dynamics

As is standard in the literature, we use a three-dimensional point-mass model for the aircraft
dynamics:

dpx

dt
= V cos γ cos χ (1)

dpy

dt
= V cos γ sin χ (2)

dpz

dt
= V sin γ (3)

dγ

dt
=

g0

V
(n cos φ− cos γ) (4)

dχ

dt
=

g0

V
n sin φ

cos γ
(5)

dV
dt

=
FT − FD

m
− g0 sin γ (6)

The position of the aircraft is given by the coordinates (px, py, pz) of its center of gravity in a
local coordinate system, (px,py) being its coordinates in a horizontal plane and pz its altitude.
The aircraft flies at speed V and the angles χ, φ, and γ correspond respectively to its heading,
roll, and pitch. The variables FT and FD are the norms of the thrust and drag forces respectively,
m is the aircraft mass, n is the load factor, and g0 is the gravitational acceleration.

We assume that aircraft follow their trajectories with a stepwise constant acceleration.
Maneuvers are executed with a constant acceleration and yaw rate, and the speed vector
remains constant between two consecutive maneuvers. This assumption is realistic because
it respects the time-continuity of speed, and it corresponds to a setting where maneuvers are
performed smoothly. Other speed changes could be considered, and they would impact only
the computation of the separation distances and the maneuver costs. In the remainder of this
article, F = J1; NK denotes the set of aircraft.

2.2 Aircraft maneuvers

2.2.1 Types of maneuvers

We consider maneuvers of the following types:

• Variable NIL refers to the null maneuver, i.e., no maneuver is performed.

• Variable Hθ is a heading change by an angle θ ∈ [−π; π]1.

• Variable Sδ is a relative speed change of δ%. We use relative speed changes because they
are used in large-scale projects such as ERASMUS Brochard (2009).

1Positive angles correspond to counterclockwise rotations.
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• Variable Vδh is a change of δh flight levels.

Figure 2 describes the geometry of the heading change and the flight-level change. Heading
changes are performed in a turning-point fashion as depicted in Figure 2a. Flight-level changes
are followed by a return to the initial flight level, as in Figure 2b. We defineM = ∪n

f=1M f to
be the set of all possible maneuvers,M f being the set of maneuvers for aircraft f ∈ F .

Figure 2: Geometry of heading change and flight-level change.

(a) Projection of heading change on horizontal plane

return toward trajectory

planned trajectory

(b) Projection of flight-level change on vertical plane

return toward trajectory

planned trajectory

2.2.2 Dynamics of the maneuvers

Since the analysis carried out by Omer and Farges Omer and Farges (2013) concludes that
considering instantaneous maneuvers can lead to significant errors in the separation distances,
we use a model with constant acceleration Paielli (2003). In Paielli (2003), Paielli states that the
typical acceleration during a speed adjustment for commercial aircraft is of the order of 0.4 kn/s
or 0.02 g. This value is chosen to respect the comfort of the passengers. Heading changes are
approximated by a steady turn of constant rate and radius, given by the following equations:

ω =
dχ

dt
=

g0 tan φ

V
(7)

r =
V2

g0 tan φ
(8)

We also consider the altitude maneuvers to be dynamic. The changes of flight level are
performed at a vertical speed that is a function of thrust, drag, and true airspeed. Details on
the computation of the vertical speed can be found in the BADA user manual BAD (2011).

2.2.3 Trajectory recovery

We consider that each aircraft follows a 4D contractual trajectory, which represents a compromise
between the user’s preferences and the capacity constraints of the network. The trajectories
must satisfy time and space requirements over a sequence of 4D points; noncompliance leads to
penalty fees. It is therefore important to ensure that after a maneuver is performed the aircraft
recovers its initial trajectory as soon as possible. Ensuring strict velocity control can be costly
and almost impossible in practice. Time recovery is therefore not required, but it is encouraged
via a penalty on the time shift between the trajectory without conflict and the trajectory after a
maneuver. We use the method of Omer Omer and Farges (2013) to compute the penalty costs:
the penalty is estimated as the total cost induced by a time recovery of the 4D trajectory, at a
speed depending on the sign of the shift.

2.2.4 Maneuver costs

We now discuss the computation of the maneuver cost. We wish to highlight that although
the computations can be complex they do not interfere with the solution method described in
Section 4. Moreover, more complex cost models could be considered without changes to the
solution method.
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For a jet commercial aircraft f with constant altitude, the fuel consumption by time and
distance unit is

Ct, f

(
t, Vf (t)

)
= c1, f

(
1 +

Vf (t)
c2, f

)
FT, f (t) (9)

Cd, f

(
t, Vf (t)

)
=

Ct, f

(
t, Vf (t)

)
Vf (t)

(10)

where the variables c1, f and c2, f are constants that depend on the aircraft type f .
The approach depends on the type of maneuver.

Speed change Consider a change of speed V′f = Vn
f (1 + δ) for a time t, where variable Vn

f is
the nominal speed of aircraft f . Let Cspeed be the cost of the maneuver. It is the sum of:

1. the cost of the additional fuel burnt during the maneuver, C f
s ;

2. the penalty for not respecting the 4D contract, C4D
s .

Thus,
Cspeed = C f

s + C4D
s (11)

To compute C f
s , it is useful to distinguish the cost incurred during the transition from Vn

f to
V′f , Ct

s, and that incurred on the portion of the trajectory flown with the new speed, Cn
s :

C f
s = Ct

s + Cn
s (12)

Let tδ,V be the time required to go from Vn
f to V′f . We compute Ct

s as follows:

Ct
s =

∫ tδ,V

0
Ct, f

(
t, Vf (t)

)
dt− tδ,VCt, f

(
t, Vn

f

)
(13)

The cost Cn
s is

Cn
s = (t− tδ,V)

(
Ct, f (t, V′f )− Ct, f (t, Vn

f )
)

(14)

The penalty C4D
s is deduced from the delay d4D

s caused by the maneuver, which is computed as
follows:

d4D
s =

∫ tδ,V

0
Vf (t)dt + (t− tδ,V)V′f − tVn

f (15)

A recovery speed that depends on the sign of d4D
s is used to return to the 4D trajectory, inducing

the cost C4D
s .

Heading change Let Cheading be the cost of a heading change by an angle θ for a period t. It
is the sum of:

1. the cost of the additional distance induced by the maneuver, Cd
h ;

2. the penalty for not respecting the 4D contract, C4D
h .

Thus,
Cheading = Cd

h + C4D
h (16)

To recover the spatial trajectory, the aircraft performs a turn with an angle −2θ as detailed
in Figure 3.
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Figure 3: Geometry of the trajectory recovery following a heading change.

θ

θ

l 2
=

V f(
δt
−

t θ
)

l4 =
V

f (δt−
t
θ )

l3 = 2Vf tθ

l5 = V
f tθl 1

=
V ft θ

lp
1 = 2r sin π−θ

2 lp
2 = l2 cos θ lp

4 = l4 cos θlp
3 = 4r sin π−θ

2 lp
5 = 2r sin π−θ

2

r

The aircraft flies an extra distance d given by

d =
5

∑
i=1

li − lp
i (17)

where the expressions for li and lp
i are given in Figure 3. The cost of the extra fuel burnt over d

is then computed as follows:
Ch

d = Cd, f (t, Vf )d (18)

The penalty C4D
h is then deduced from the delay d4D

h due to the extra distance d:

d4D
h =

d
Vn

f
(19)

A recovery speed that depends on the sign of d4D
h is used to return to the 4D trajectory, inducing

the cost C4D
h .

Flight-level change Consider a change of δh flight levels during a period t. Figure 4 illustrates
the geometry of the maneuver for an example where an aircraft climbs one level.

Figure 4: Geometry of the trajectory recovery following a flight-level change.

FLn

FLn+1

γd

γc

l1 =
Vf tδγ

l7 = Vf tδγ

l5 = Vf tδγ
l3 = Vf tδγ

l 2
=

V
c f
tc f

l6
=

V
df t df

lp
1 = 2r sin π−γc

2 lp
5 = l5lp

5 = Vc
f tc

f cos γc lp
3 = 2r sin π−γc

2

lp
5 = 2r sin

π−γd
2 lp

7 = 2r sin
π−γd

2lp
6 = Vd

f tdf cos γd

l5 = Vf (δ− tc
f − td

f )

r

Let CFL be the cost of this maneuver. It is the sum of:

1. the extra cost during the ascent and descent, denoted Ca
FL and Cd

FL, respectively;

2. the difference between the cost on the initial flight level and that on the new flight level,
denoted Cδh

FL;
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3. the cost of the additional distance d, denoted Cd
FL;

4. the 4D contract penalty C4D
FL .

Thus,
CFL = Ca

FL + Cd
FL + Cδh

FL + Cd
FL + Cp

FL (20)

Ca
FL and Cd

FL are derived by

Ca
FL = ta

(
Ca,t( f , Va

f )− Ct, f (t, Vn
f )
)

(21)

Cd
FL = td

(
Cd,t( f , Vd

f )− Ct, f (t, Vn
f )
)

(22)

(23)

where ta, td are the durations of ascent and descent, Ca,t and Cd,t are the fuel costs during the
ascent and descent, and Va

f and Vd
f represent the ascent and descent speeds, respectively. The

fuel consumption and the ascent and descent speeds are taken from the BADA tables for the
corresponding aircraft types.

The difference in the fuel consumption between the two levels is as follows:

Cδh
FL = (δt− ta − td)(CFLn+δh − CFLn) (24)

where CFLn+δh and CFLn denote the fuel consumption per time unit at the new and initial flight
level, respectively. The fuel burnt on the additional distance d is as follows:

Cd
FL = Cd, f (t, Vf )d (25)

where the distance d is

d =
7

∑
i=1

li − lp
i (26)

and the expressions for li and lp
i are given in Figure 4.

The computation of the 4D contract penalty, C4D
FL , is similar to that for the heading maneuvers.

2.3 Aircraft separation

In the context of aircraft separation we use the following notation:

• T : time horizon for the conflict resolution.

• pi(t) ∈ R3: position vector of aircraft i at time t. The variables pi,x(t), pi,y(t), and pi,z(t)
denote respectively the abscissa, ordinate, and altitude components of the position vector.

• si(t) ∈ R3: speed vector of aircraft i at time t. The variables si,x(t), si,y(t), and si,z(t)
denote respectively the abscissa, ordinate, and altitude components of the speed vector.

• ai(t) ∈ R3: acceleration vector of aircraft i at time t. The variables ai,x(t), ai,y(t), and ai,z(t)
denote respectively the abscissa, ordinate, and altitude components of the acceleration
vector.

Let i and j be two aircraft applying maneuvers mi and mj, respectively. Aircraft i and j are
said to be separated at time t if and only if at least one of the following constraints holds:

dh
ij(t)

2 = (pi,x(t)− pj,x(t))2 + (pi,y(t)− pj,y(t))2 ≥ D2
h,min (27)

dv
ij(t)

2 = (pi,z(t)− pj,z(t))2 ≥ D2
v,min (28)
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At any time t ∈ T , we may have both, one, or neither aircraft maneuvering. The set T can
thus be divided into intervals where both i and j have a constant acceleration. For each interval,
we find the time at which the aircraft are the closest to check whether the separation constraints
hold. Let Tk be an interval, and let t0 ∈ T be the starting time of maneuver mi. If we assume
that mi is applied with a constant acceleration, we obtain the position and the speed vector of i
at time t0 + t with t such that t− t0 ≤ |Tk|:

pi(t0 + t) = pi(t0) + (t− t0)si(t0) +
(t− t0)

2

2
ai(t0) (29)

si(t0 + t) = si(t0) + (t− t0)ai(t0) (30)

Let ph
ij (respectively sh

ij, ah
ij) denote the horizontal position (respectively the speed and the

acceleration) of aircraft j relative to aircraft i. We define

dh
ij(t + τ) = ||ph

ij(t + τ)||

= ||ph
ij(t) + τsh

ij(t) +
τ2

2
ah

ij(t)||

where τ ≥ 0.
Let τij ∈ argmin

τ≥0
dh

ij(t + τ)2 and th
ij ∈ argmin

t∈T
dh

ij(t)
2.

We have

th
ij =


0 if τij = 0
|Tk| if τij ≥ |Tk|
τij otherwise

where |Tk| is the length of interval Tk. Aircraft i and j are horizontally separated during interval
T if and only if

dh
ij(t

h
ij)

2 ≥ D2
h,min (31)

Similarly, aircraft i and j are vertically separated during interval T if and only if

dv
ij(t

v
ij)

2 ≥ D2
v,min (32)

Let Ih
i,j and Iv

i,j be the intervals during which i and j are not separated horizontally and
vertically, respectively. Then i and j are separated if and only if

Ih
i,j ∩ Iv

i,j = ∅ (33)

3 Modeling of the CR problem as an MWMCC problem

We now describe how the CR problem can be modeled as an MWMCC problem. This model is
based on a preliminary study presented in Lehouillier et al. (2015b,a).

3.1 Graph theory definitions

Let G = (V , E) be a simple undirected graph with vertex set V and edge set E ⊆ V × V .
A clique in G is a vertex set C with the property that each pair of vertices in C is linked by an

edge:
C ⊆ V is a clique⇔ ∀(u, v) ∈ C × C, u 6= v, (u, v) ∈ E (34)

A maximum clique in G is a clique that is not a subset of any other clique in G. The cardinality
of a maximum clique of G is called the clique number and denoted w(G). Let c : V → R be
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a vertex-weight function associated with G. A maximum clique of minimum weight in G is a
maximum clique C that minimizes ∑

v∈C
c(v).

A stable set S ⊆ V is a subset of vertices such that no two are adjacent in G. A bipartite graph
is a graph in which the vertices can be partitioned into two distinct stable sets, V1 and V2. Each
edge of the graph then connects one vertex of V1 to a vertex of V2. This concept can be extended
to k−partite graphs, where the vertex set is partitioned into k distinct stable sets.

The density of a graph G = (V , E) is defined as the ratio of the number of edges |E | to the
number of edges in a complete graph with |V| vertices:

dG =
|E |

|V|(|V| − 1)
2

(35)

3.2 Graph construction

We use a conflict graph G = (V , E) to model the CR problem.

3.2.1 Defining the vertices

The set of vertices is V = J1; |M|K, and V f is the set of vertices corresponding to aircraft f . In
emergency scenarios where feasibility is a concern, one can introduce n vertices corresponding
to expensive emergency maneuvers. Such maneuvers can for example correspond to those
implemented by the Terminal Collision Avoidance system FAA (2011) or those described by
Schouwenaars Schouwenaars (2006). However, since feasibility has not been an issue in our
tests, we did not add these vertices.

3.2.2 Defining the edges

Let (i, j) ∈ V × V be a pair of vertices representing maneuvers (mi, mj) ∈ M×M of aircraft
(i, j) ∈ F × F . For i 6= j, we write mi�mj if no conflict occurs when aircraft i performs
maneuver mi while j performs mj. The set of edges E corresponds to the pairs of maneuvers
performed by two aircraft without introducing conflicts:

E =
{
(i, j) ∈ V × V , i 6= j : mi�mj

}
(36)

3.2.3 Relative density

We can define a measure of density based on the structure of the conflict graph. There is no
edge between two different maneuvers of a given aircraft, which yields Observation 3.1.

Observation 3.1 For all f ∈ F ,V f is a stable set, i.e., there is no edge linking two distinct vertices of
V f . Hence, the graph G is |F |-partite.

We define the relative density of G in Equation (37), which is an adaptation of the density of
a graph to the conflict graph using Observation 3.1. This quantity is more meaningful, since it
compares the number of edges of a conflict graph to the maximum number of edges a conflict
graph can have.

d∗G =
|E |

|V|(|V| − 1)
2

− ∑
f∈F

|M f |(|M f | − 1)
2

(37)
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3.3 Conflict-free solution: Formulation and example

As mentioned earlier, given the current position, speed, acceleration, and planned trajectories
of a set of aircraft, solving the CR problem involves finding a conflict-free set of maneuvers that
minimizes the total cost. Observation 3.2 links the cliques in G to the CR problem:

Observation 3.2 Let C be a clique in graph G. Then C represents a set of conflict-free maneuvers for a
subset of F of cardinality |C|.

Observation 3.2 indicates that finding a set of conflict-free maneuvers for F is equivalent to
finding a clique of G of cardinality |F |. We can derive the following proposition:

Proposition 3.3 If a conflict-free solution exists, then ω(G) = |F |. Otherwise, ω (G) is the maximum
number of flights involved in a conflict-free situation.

Figure 5 presents an example with three aircraft and the corresponding solution. If each
aircraft follows its planned trajectory as indicated in Figure 5a, there will be conflicts. We
assume here that, in addition to the null maneuver, only two heading changes (±30◦) are
allowed. We build the CR graph shown in Figure 5b. The graph is multipartite, with each stable
set representing the set of possible maneuvers for one aircraft. Solving the CR problem is then
equivalent to searching for a minimum-weight clique of three vertices, i.e., a triangle. Figures 5c
and 5d show the solution and the triangle of minimum weight respectively.

Figure 5: Example: Instance and solution.

(a) Example with three aircraft
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We define the problem CRM as the restriction of the CR problem to the set of maneuvers
M. Using Observations 3.2 and 3.3, we can restate the CRM problem as follows: searching for
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a conflict-free solution of minimum cost is equivalent to solving the CRM problem consisting
of finding a clique of maximum cardinality and minimal cost in the graph G.

As stated in Section 2.2, the cost of a maneuver depends on the time during which it is
executed. One way to model this would be to discretize the execution time and to create the
vertices accordingly. It would be straightforward to compute the cost of the vertices, using the
method described in Section 2.2. The drawback of this method is the explosion of the number
of vertices, which will drastically increase the computational time. To address this issue, we
decided to keep the graph small by considering one vertex per maneuver. With this choice, the
cost of the vertices cannot be determined a priori, since they depend on the maneuvers executed
by the other aircraft. In other words, the cost of each vertex depends on the vertices in the
clique. This problem is a new variant of the maximum-clique minimum-weight problem, where
the weights are on the vertices, but they depend on the vertices in the clique.

3.4 Cost computation

For ease of presentation, and without loss of generality, in this section we make no distinction
between a vertex and the corresponding maneuver. As explained above, the cost of a maneuver
depends on its execution, which depends on the maneuvers performed by the other aircraft. As
a consequence, we need to define the cost of the edges before the cost of the vertices.

3.4.1 Cost of the edges

An edge e = (i, j) will be considered as a pair of maneuvers. We compute the cost of edge
e = (i, j) as a pair composed of the costs of maneuvers i and j, denoted C(i,j)

i and C(i,j)
j . These

costs correspond to an execution time tj
i which is the minimum time for which maneuvers i and

j must be performed to avoid a conflict when at least one of the aircraft returns to its original
trajectory.

3.4.2 Cost of the vertices

To determine the cost of maneuver i, denoted ci, we need to compute the time ti for which it is
performed. If i is not in the optimal solution, then ti = 0. Otherwise,

ti = max
j∈V∩C

tj
i (38)

Equation (38) states that maneuver i has to be applied for a sufficient time to be conflict-free
with every other chosen maneuver. Indeed, if aircraft i and j are conflict-free when they execute
their maneuvers for a duration t, then they will remain conflict-free if they perform their
maneuvers for T > t.
This leads to

ci =

 max
j∈V∩C

C(i,j)
i if i ∈ C

0 otherwise

4 Methodology

4.1 MILP formulation

4.1.1 Motivation

Finding a maximum clique in an arbitrary graph is a well-known optimization problem that
is NP-hard; see Karp Karp (1972). The problem has been thoroughly studied and exact and
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heuristic methods have been developed. For an overview of the theoretical results and existing
methods, see Bomze et al. Bomze et al. (1999) and Wu and Hao Wu and Hao (2015).

In the existing methods, the weights of the vertices are known beforehand, but in our model
the costs of the vertices depend on which vertices are in the clique. Existing algorithms cannot
be used, and we formulate our problem as an MILP that can be solved by any MILP solver.

4.1.2 Formulation

The decision variables of the model relate to the vertices of the graph. They correspond to the
choice of the vertices in the clique and the cost of each vertex:

• xi =

{
1 if vertex i is in the maximum clique
0 otherwise

• ci ∈ R+ is the cost of vertex i.

The clique search can then be modeled via the following MILP, denoted MIP:

minimize ∑
i∈V

ci (39)

subject to xi + xj ≤ 1, ∀(i, j) 6∈ E (40)

∑
i∈V

xi = N (41)

ci ≥ C(i,j)
i (xi + xj − 1), ∀(i, j) ∈ E (42)

xi ∈ {0; 1}, ∀i ∈ V (43)

ci ∈ R+, ∀i ∈ V (44)

The objective function (39) minimizes the total maneuver cost. Constraints (40) are clique
constraints stating that two nonadjacent vertices must not be part of the clique; this means
that two conflicting maneuvers must not be part of the solution. Constraint (41) is based on
Proposition 3.3, which defines the cardinality of the maximum clique. Constraints (42) compute
the cost of the vertices: if a vertex is in the maximum clique, then its cost must be greater than
the cost on every edge connecting it to the other vertices in the clique; this is the only constraint
on the vertex cost. Constraints (43)–(44) are binarity and positivity constraints, respectively.

4.1.3 Strengthening the linear relaxation

Strengthening the linear relaxation of an MILP can reduce the computational time by providing
better lower bounds. We added the following constraints:

∑
j∈V f

xj = 1, ∀ f ∈ F (45)

Constraints (45) ensure that each aircraft is assigned a maneuver. These constraints were
not included in the original formulation because constraints (40), (41), and (43) make them
redundant. Each set of nodes M f is a stable set, meaning that only one maneuver can be
assigned to each aircraft in a clique. Since (41) ensures that the number of vertices in the clique is
equal to the number of aircraft, (45) is always satisfied in a solution of (40)–(44). However, these
constraints improve the linear relaxation because they prevent solutions where the fractional
maneuvers are all assigned to the same aircraft.
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4.2 Decomposition methods

The motivation for decomposition is two-fold. First, since the MWMCC problem is NP-hard,
the computational time will increase with the size of the instances. The size of the sets of
maneuvers can also have an impact. Second, in practice the instances have important geometric
characteristics: aircraft on different flight levels are weakly interdependent, meaning that they
will almost never interfere with each other. However, these geometric considerations do not
appear explicitly in our model.

We design two decomposition methods. In Section 5 we will analyze their effectiveness.

4.2.1 SMILO procedure

In this subsection, we present a SMILO procedure for the CR problem. This procedure iteratively
solves several MILPs on graphs with the same number of vertices in which the discretization
values are updated in a fashion similar to a trust region method. The goal is to obtain a
trade-off between the computational time and the cost, and to study the impact of the chosen
discretization. Algorithm 1 describes the SMILO procedure.

We use the following parameters:

• F : set of aircraft;

• v f
min, v f

max: minimum and maximum speed deviation allowed for aircraft f ;

• χ
f
min , χ

f
max: minimum and maximum heading deviation allowed for aircraft f ;

• δ
f
v , δ

f
χ: speed and heading discretization of the maneuvers of aircraft f ;

• n f
s , n f

χ: number of speed and heading nodes for aircraft f , computed using the values of

v f
min, v f

max, χ
f
min, χ

f
max, δ

f
v , and δ

f
χ.

The procedure starts by storing the number of vertices representing speed and heading maneu-
vers for each aircraft. It sequentially solves the MIP until no improvement is achieved when
updating the set of verticesM between two consecutive steps. The update ofM depends on
whether or not the current instance of the graph is feasible. If it is feasible, the update depends
on the maneuver assigned to f in the current solution:

• If f perfoms no maneuver,M f is erased, except for the NIL node. New sets of speed and
heading maneuvers are added to F to obtain intervals centered around 0.

• If f performs a heading change of magnitude m, all the speed nodes are deleted from
M f and the heading interval is replaced with an interval with 0 and m as extrema. The

discretization step is chosen to retain n f
χ heading nodes.

• If f performs a speed change of magnitude m, all the heading nodes are deleted fromM f
and the speed interval is replaced with an interval with 0 and m as extrema, depending
on the sign of m. The discretization step is chosen to retain n f

v speed nodes.

If the current instance is not feasible, all the parameters describing the maneuvers F are
doubled, to allow for larger maneuvers while maintaining a constant number of vertices in the
graph.
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Algorithm 1 SMILO procedure for CR problem

1: procedure SMILO(F , v1
min, . . . , vN

min, v1
max, . . . , vN

max, . . . , χ1
min, χN

min, χ1
max, . . . , χN

max, δ1
v , . . . , δN

v , δ1
χ, . . . , δN

χ )
2: for f ∈ F do

3: n f
v ←

v f
max−v f

min

δ
f
v

4: n f
χ ←

χ
f
max−χ

f
min

δ
f
χ

5: zc ← +∞
6: while |z− zc| > 0.01 do
7: z← zc
8: z← SOLVE MIP(F , v1

min, . . . , vN
min, v1

max, . . . , vN
max, . . . , χ1

min, . . . , χN
min, χ1

max, . . . , χN
max, δ1

v , . . . , δN
v , δ1

χ, . . . , δN
χ )

9: if z < +∞ then
10: for f ∈ F do
11: Let m be the maneuver of aircraft f in the last solution found
12: if m is the null maneuver then
13: Erase all the heading and speed nodes of aircraft f

14: χ
f
max ← b

n f
χ

2 c
15: χ

f
min ← −χ

f
max

16: δ
f
χ ← 1

17: Build heading nodes with the values of χ
f
max, χ

f
min, and δ

f
χ

18: v f
max ← b n f

v
2 c

19: v f
min ← −v f

max

20: δ
f
v ← 1

21: Build speed nodes with the values of v f
max, v f

min, and δ
f
v

22: else
23: if m is a heading maneuver then
24: Erase all speed nodes of aircraft f
25: χ

f
max ← max{m, 0}

26: χ
f
min ← min{m, 0}

27: δ
f
χ ← b |m|n f

χ

c

28: Build heading nodes with the values of χ
f
max, χ

f
min, and δ

f
χ

29: else
30: Erase all heading nodes of aircraft f
31: v f

max ← max{m, 0}
32: v f

min ← min{m, 0}
33: δ

f
v ← b |m|n f

v
c

34: Build speed nodes with the values of v f
max, v f

min, and δ
f
v

35: else
36: for f ∈ F do
37: v f

max ← 2v f
max , χ

f
max ← 2χ

f
max , v f

min ← 2v f
min , χ

f
min ← 2χ

f
min , δ

f
v ← 2δ

f
v , δ

f
χ ← 2δ

f
χ

38: zc ← SOLVE MIP(F , v1
min, . . . , vN

min, v1
max, . . . , vN

max, . . . , χ1
min, . . . , χN

min, χ1
max, . . . , χN

max, δ1
v , . . . , δN

v , δ1
χ, . . . , δN

χ )

4.2.2 Second decomposition method

The second decomposition method is inspired by the POPMUSIC algorithm of Taillard and
Voss Taillard and Voss (2002). This metaheuristic is designed for combinatorial optimization
problems that can be partially optimized. It generates neighborhoods that are a better fit for
large problems. These neighborhoods need not be enumerated, since they can be implicitly
explored with an optimization procedure. Algorithm 2 details the method.
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Algorithm 2 Large Neighborhood Search (LNS) Algorithm

1: procedure LNS(r)
2: Input: Solution S composed of pieces s1, . . . , sp
3: O← ∅
4: while O 6= {s1, . . . , sp} do
5: Select si /∈ O
6: Create a subproblem Ri composed of the r pieces {si1 , . . . , sir} most related to si
7: Optimize Ri
8: if Ri has been improved then
9: Update S

10: O← ∅
11: else
12: O← O ∪ {si}

To apply Algorithm 2, the user must define four key elements:

1. a definition of the pieces of a solution;

2. the selection procedure;

3. a definition of the relatedness of solution pieces;

4. the subproblem optimizer.

The algorithm works on a solution divided into p pieces. The algorithm first selects a piece
p0 to be optimized. It then creates a subproblem containing the r pieces of the solution that are
the most closely related to p0. If solving the subproblem yields no improvement in p0, then this
piece is added to the set of chosen pieces (labelled O). Otherwise, O is reset to the empty set.
The algorithm repeats the process until the set O contains all the pieces of the solution.

In a nutshell, the algorithm iteratively tries to improve the current solution by performing
neighborhood searches to improve every piece of the solution. The neighborhood of a piece of
the solution is defined according to a user-specified relatedness criterion.

We apply Algorithm 2 to large instances with the aircraft randomly allocated to different
flight levels. The four elements of our application are:

1. Each solution piece corresponds to one flight level.

2. We select pieces by starting from the lowest flight level.

3. The relatedness is the vertical distance between the flight levels.

4. The subproblem optimizer is Algorithm 1.

Algorithm 3 gives the details of the overall procedure. The set of aircraft is sorted by
flight level. In the first loop (line 3), Algorithm 1 is used to optimize the problem for the
corresponding aircraft, allowing only horizontal maneuvers. In the second part of the algorithm
(line 10), for each flight level, Algorithm 1 is used to optimize the problem for the corresponding
aircraft. Vertical maneuvers are now allowed, but the constraints consider the maneuvers of the
set of aircraft on the adjacent levels. In other words, we authorize all types of maneuvers on the
current flight level, but we fix the maneuvers of the aircraft on the adjacent levels to those that
appear in the last solution found. Algorithm 3 stops when no improvement can be achieved.
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Algorithm 3 Spatial decomposition method

1: procedure Spatial Decomposition(F )
2: Input: F : set of aircraft randomly generated on p flight levels (FLs)
3: for i = 1, . . . , p do
4: Resolve conflicts for FL i without altitude maneuvers
5: si ← solution for FL i
6: Call LNS(2)
7: Input: Solution S composed of pieces s1, . . . , sp
8: R1: resolve conflicts for FL 1 allowing altitude maneuvers, given the maneuvers of s2
9: Rp: resolve conflicts for FL p allowing altitude maneuvers, given the maneuvers of sp−1

10: for i = 2, . . . , p− 1 do
11: Ri: resolve conflicts for FL i allowing altitude maneuvers, given the maneuvers of

si−1 and si+1

For this study, we apply Algorithm 3 to instances with the aircraft randomly allocated
to several flight levels. However, Algorithm 3 could be applied to other types of instances.
Adapting the relatedness between subsets of aircraft would divide the aircraft set into different
clusters.

5 Results

In this section, we validate our model using a benchmark of complex two-dimensional and
three-dimensional instances. The data used to compute the maneuvers and their costs were
extracted from the BADA table for the Airbus A-320. The tests were performed on a computer
equipped with a 3.4-GHz Intel Core i7-3770 processor and 8 GB of RAM. We implemented the
algorithms in C++ and used CPLEX 12.5.1.0 CPL (2014) with its default options.

Our tables present the following information:

• Case: case configuration;

• |F |: number of aircraft;

• |V|: number of vertices;

• |E |: number of edges;

• d∗: relative graph density;

• n: number of variables;

• m: number of constraints;

• zip: optimal value (in kilograms of fuel);

• nnodes: number of branch-and-bound nodes;

• tlp: time (s) to solve continuous relaxation of MILP;

• tip: time (s) to obtain zip.
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5.1 Benchmark description

5.1.1 Structured instances

This benchmark has three types of instances. The roundabout instances Rn have n aircraft
distributed on the circumference of a 100 NM radius; these aircraft fly toward the center at the
same speed and altitude. The crossing flow instances Fn,θ,d have two trails of n aircraft separated
by d nautical miles that intersect each other at an angle θ. The grids Gn,d are composed of two
flow instances Fn, π

2 ,d, with one instance translated 15 NM north-east of the other. Figure 6 gives
an example of each instance.

Figure 6: Examples

(a) Roundabout (b) Crossing Flow (c) Grid

5.1.2 Single-level random benchmark

This benchmark consists of random instances, where the aircraft are uniformly distributed
in a square sector with a side length of 50 NM. To avoid infeasible instances, we perform
preprocessing before solving the problem: for each pair of aircraft that will lose separation
within the first 30 s of observation, we randomly delete one of the two aircraft. We generate 15%
more aircraft than the number desired to anticipate the effect of the preprocessing. If too many
aircraft remain after the preprocessing, we randomly remove extra aircraft until the desired
number is reached.

5.1.3 Multi-level benchmark

This benchmark contains instances that are more realistic. We generate more aircraft than for
the single-level benchmark (from 50 to 200 aircraft in increments of 25). The aircraft generation
is performed as in the single-level case. The aircraft are then randomly assigned to different
flight levels, following a uniform distribution. We use Mn,m to label the instance where n
aircraft are assigned to m flight levels.

5.2 Computational results

5.2.1 Structured instances

Figure 7 shows the solutions for the instances of Figure 6. Figure 7a shows the optimal solution
for R8: the aircraft perform a right turn of 5◦ and avoid each other in a roundabout fashion
before returning to their initial trajectories. Instance F3, π

4 ,10 is solved symmetrically: each group
of aircraft performs the same set of heading changes. The first aircraft of each group turns
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right by 5◦, while the second and third aircraft turn left by 5◦ and 10◦ respectively. Instance
G3,10 is also solved symmetrically: the horizontal and vertical groups perform the same set of
maneuvers.

Figure 7: Solutions of the examples

(a) Roundabout (b) Crossing Flow (c) Grid

The first set of simulations considers only horizontal maneuvers, with relative speed changes
of ±2% , ±4%, and ±6% and heading changes of ±5◦,±10◦, and ± 15◦. Table 1 gives the
dimensions of the instances and the results for the original model. Section 5.3 gives the SMILO
results for these instances. Algorithm 3 was not applied to this benchmark set because the
inherent symmetry makes the design of a relatedness procedure not necessarily relevant.

The original model yields the optimal solution in real-time; complex problems with up to 20
aircraft can be solved in less than 15 s. This result is satisfying since the graph is dense.

Table 1: Dimensions of the instances and results for the virtual benchmark using only horizontal
maneuvers

Graph G MILP Solution

Instance type Case |F | |V| |E | d m n zip nodes tlp tip

Roundabout

R4 4 52 612 0.6 104 1333 2.66 27 0.02 0.07
R8 8 104 2744 0.58 208 5705 5.34 75 0.02 0.51
R12 12 156 6300 0.56 312 12925 19.99 84 0.02 2.95
R16 16 208 11396 0.56 416 23225 42.73 39 0.02 6.99
R20 20 260 17756 0.55 520 36053 86.59 71 0.02 11.63

Flow

F1,60,10 2 26 102 0.6 52 259 1.32 0 0.02 0.05
F2,60,10 4 52 736 0.73 104 1581 2.66 0 0.02 0.06
F3,60,10 6 78 1980 0.78 156 4123 4 0 0.02 0.18
F4,60,10 8 104 3846 0.81 208 7909 5.34 57 0.02 0.57
F5,60,10 10 130 6349 0.83 260 12969 6.68 0 0.02 0.9
F6,60,10 12 156 9483 0.85 312 19291 9.96 70 0.02 1.96
F7,60,10 14 182 13252 0.86 364 26883 13.3 0 0.02 1.44
F8,60,10 16 208 17659 0.87 416 35751 18.66 0 0.02 1.7
F9,60,10 18 234 19057 0.88 468 42579 30.18 10 0.02 1.79
F10,60,10 20 260 22563 0.87 520 47264 41.61 0 0.02 1.85

Grid

G2,1,10 4 52 787 0.78 104 1683 1.32 35 0.02 0.18
G2,2,10 8 104 3780 0.8 208 7777 3.33 0 0.02 0.28
G2,3,10 12 156 9072 0.81 312 18469 6.01 29 0.02 1.98
G2,4,10 16 208 16854 0.83 416 34141 11.23 55 0.02 5.87
G2,5,10 20 260 27207 0.85 520 54955 16.06 138 0.02 13.59

In the second simulation set, we introduce altitude maneuvers: the aircraft are allowed to
move to an adjacent flight level. Table 2 gives the results. The solution times tend to slightly
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increase; this can be explained by the introduction of a new set of high-degree vertices. Every
change of flight level is conflict-free with all the horizontal maneuvers. Nevertheless, the
solution can still be computed quickly. These results are promising since our instances involve
denser traffic than occurs in real-life situations.

Table 2: Dimensions of the instances and results for the virtual benchmark with flight-level
changes

Graph G MILP Solution

Instance type Case |F | |V| |E | d m n zip nodes tlp tip

Roundabout

R4 4 60 936 0.69 120 1997 2.66 0 0.02 0.08
R8 8 120 4256 0.68 240 8761 5.34 67 0.02 0.7
R12 12 180 9864 0.66 360 20101 19.99 108 0.02 4.27
R16 16 240 17876 0.66 480 36249 42.73 96 0.02 16.63
R20 20 300 28016 0.66 600 56653 86.59 277 0.02 37.1

Flow

F1,60,10 2 30 156 0.69 60 375 1.32 0 0.02 0.02
F2,60,10 4 60 1068 0.79 120 2261 2.66 54 0.02 0.22
F3,60,10 6 90 2814 0.83 180 5815 4 0 0.02 0.23
F4,60,10 8 120 5406 0.86 240 11061 5.34 75 0.02 0.98
F5,60,10 10 150 8859 0.87 300 18029 6.68 0 0.02 1.19
F6,60,10 12 180 13167 0.89 360 26707 9.96 74 0.02 2.4
F7,60,10 14 210 18334 0.9 420 37103 13.3 123 0.02 3.6
F8,60,10 16 240 24363 0.9 480 49223 18.66 103 0.02 7.2
F9,60,10 18 270 31261 0.91 540 63081 30.18 79 0.02 9.13
F10,60,10 20 300 39036 0.91 600 78693 41.61 92 0.02 11.51

Grid

G2,1,10 4 60 1115 0.83 120 2355 1.32 53 0.02 0.1
G2,2,10 8 120 5332 0.85 240 10913 3.33 0 0.02 0.42
G2,3,10 12 180 12744 0.86 360 25861 6.01 0 0.02 2.01
G2,4,10 16 240 23542 0.87 480 47581 11.23 185 0.02 10.05
G2,5,10 20 300 37807 0.87 600 76235 16.06 180 0.02 19.91

5.2.2 Single-level random benchmark

Figure 8a shows a randomly chosen instance U15 and Figure 8b shows the corresponding
solution. The initial speed vectors are represented by dotted vectors, and the requested
maneuvers are represented by solid vectors. The two aircraft circled in red changed their flight
levels.

The results are reported in Table 3, where the figures are averages over 100 simulations.
Table 4 gives the results for the single-level random benchmark with the addition of flight-level
changes: the aircraft can climb to the next level or descend to the level below.

For some instances the computational time is now higher. To investigate this issue, we
ran simulations for different numbers of possible maneuvers. The results showed that the
computational time is sensitive to the number of vertices in a given instance. This observation
motivated the SMILO procedure presented in Section 4.2.

5.3 Detailed results for the SMILO procedure on the benchmark without
altitude changes

This simulation set was designed to explore two issues. The first is to identify the impact of the
number of maneuvers on the objective function and the computational time. The second is to
evaluate the performance of the SMILO procedure and to investigate the trade-off between the
optimal value and the computational time.

We used four parameter sets:
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Figure 8: Random instance U15 and its solution

(a) Random instance (b) Solution

Table 3: Dimensions of the instances and results for the single-level random benchmark with
horizontal maneuvers

Graph G MILP Solution

Instance type Case |F | |V| |E | d m n zip nodes tlp tip

Random

U5 5 55 726 1 110 1567 0.05 0 0.02 0
U10 10 110 4830 0.99 220 9890 0.23 0 0.02 0
U15 15 165 9865 0.99 330 20075 0.86 0 0.02 7.56
U20 20 220 14365 0.99 440 29190 1.54 8 0.02 11.1
U25 25 275 19182 0.98 550 38939 2.15 19 0.02 12.1
U30 30 330 28750 0.99 660 58190 2.21 45 0.02 14.32
U35 35 385 31406 0.99 770 63617 2.41 75 0.02 16.25
U40 40 440 52766 0.99 880 106452 3.21 119 0.02 19.63
U45 45 495 62051 0.99 990 125137 3.26 179 0.02 20.02
U50 50 550 57215 1 1100 115580 3.87 225 0.02 20.06
U55 55 605 69090 0.99 1210 139445 4.83 346 0.02 22.21
U60 60 660 75338 0.98 1320 152056 6.32 561 0.02 29.35

• A large discretization, with relative speed changes of ±6% and heading changes of ±15◦,
yielding an objective function value zl

ip in time tl
ip.

• A medium discretization, with relative speed changes of ±2%, ±4%, and ±6% and
heading changes of ±5◦,±10◦, and± 15◦, yielding an objective function value zm

ip in time
tm
ip.

• A narrow discretization, with 12 relative speed changes between −6% and 6% with a step
of 1% and heading changes between −15◦ and 15◦ with a step of 1◦. These parameters
yield an objective function value zn

ip in time tn
ip;

• The SMILO procedure with four speed changes and four heading changes, yielding an
objective function value zSMILO in time tSMILO.

Table 5 gives the results of these simulations. The results show that the choice of the
discretization size has a critical impact on the computational time. Going from a medium
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Table 4: Dimensions of the instances and results for the single-level random benchmark with
horizontal maneuvers and flight-level changes

Graph G MILP Solution

Instance type Case |F | |V| |E | d m n zip nodes tlp tip

Random

U5 5 75 1209 1 150 2573 0.01 0 0.02 0.01
U10 10 150 4839 1 300 9988 0.01 0 0.02 7.07
U15 15 225 8939 0.98 450 18343 0.32 0 0.02 15.25
U20 20 300 16732 0.99 600 34084 0.97 0 0.02 18.55
U25 25 375 22345 0.98 750 45465 1.29 38 0.02 20.55
U30 30 450 32248 0.99 900 65426 1.37 31 0.02 21.46
U35 35 525 42027 0.99 1050 85139 1.76 0 0.02 25.22
U40 40 600 50386 0.99 1200 102012 2.04 0 0.02 29.15
U45 45 675 60764 0.99 1350 122923 3.18 41 0.02 34.02
U50 50 750 69035 0.99 1500 139620 3.12 0 0.02 37.47
U55 55 825 84344 0.99 1650 170393 4.55 89 0.02 40.16
U60 60 900 75126 0.99 1800 152112 6.24 26 0.02 55.25

Table 5: Dimensions of instances and results

Large discretization Medium discretization Small discretization Iterative procedure

Instance type Case zl
ip tl

ip zm
ip tm

ip zn
ip tn

ip zSMILO tSMILO CPLEX
Calls

Roundabout

R4 7.93 0.04 2.66 0.07 0.96 1.45 1.06 0.06 4
R8 18.64 0.25 5.34 0.51 5.34 69.2 6.42 0.26 4
R12 32.03 0.72 19.99 2.95 15.71 362.06 18.03 0.75 3
R16 42.73 2.37 42.73 6.99 38.67 2414.48 42.73 2.41 3
R20 132.65 10.59 86.59 11.63 76.56 1162.29 86.59 10.39 4

Flow

F1,60,10 2.58 0.01 1.32 0.05 0.47 0.45 0.67 0.07 3
F2,60,10 5.26 0.03 2.66 0.06 1.14 1.27 2.09 0.09 3
F3,60,10 7.93 0.08 4 0.18 2 9.33 2.32 1.11 4
F4,60,10 10.61 0.17 5.34 0.57 3.09 48.51 4.53 2.19 4
F5,60,10 13.29 0.43 6.68 0.9 4.43 157.62 5.22 2.54 4
F6,60,10 18.64 0.82 9.96 1.96 6.35 681.09 7.39 5.82 3
F7,60,10 24 0.9 13.3 1.44 9.35 2431.05 10.45 5.95 4
F8,60,10 29.35 1.17 18.66 1.7 14.67 3600.25 15.01 6.82 4
F9,60,10 36.05 2.77 30.18 1.79 21.23 3675.12 24.11 7.43 5
F10,60,10 47.22 3.33 41.61 1.85 37.17 3700.34 39.51 8.82 5

Grid

G2,1,10 5.26 0.04 1.32 0.18 0.69 1.95 1.32 0.55 3
G2,2,10 10.61 0.18 3.33 0.28 1.39 14.93 1.44 0.66 4
G2,3,10 15.97 0.64 6.01 1.98 2.41 62.33 3.41 6.96 6
G2,4,10 25.17 2.77 11.23 5.87 3.61 317.8 8.14 13.21 3
G2,5,10 37.3 4.5 16.06 13.59 5.48 1845.36 9.51 17.72 5

Random

U15 1.37 8.12 0.54 9.1 0.34 118.45 0.46 21.34 3
U30 3.34 10.03 2.21 12.32 1.02 500.12 2.11 24.26 4
U45 5.12 14.32 3.26 19.02 2.97 1002.87 3.07 32.6 6
U60 8.45 17.01 6.32 23.35 5.98 1237.12 6.11 37.18 3

discretization to a narrow discretization divides the cost of the solution by 2 on average, but
the solution time is 18 times higher on average. The SMILO results show that it provides a
good trade-off between efficient solutions and computational time. The SMILO solutions are
on average 41% more expensive than those for the medium discretization, but it takes 50%
less time to find them. This is especially useful for the random instances, where the original
optimization model seemed less efficient.

Figure 9 summarizes Table 5. Figure 9a shows the influence of the discretization on the
quality of the best solution found and compares the SMILO solution to those obtained with
the different discretizations. The SMILO solution is an intermediate between the solutions for
the large and medium discretizations. Figure 9b compares the SMILO solution time with that
for the large and medium discretizations; the solution times for the small discretization are
omitted because the scale is different. The SMILO procedure needs less time than the medium
discretization to find the optimal value for the available set of maneuvers.

22

http://dx.doi.org/10.1016/j.ejor.2016.07.008


Preprint manuscript, see final version http://dx.doi.org/10.1016/j.ejor.2016.07.008

Figure 9: Influence of the discretization on the optimal value and the CPU time.

(a) Influence on objective value
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(b) Influence on CPU time
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5.3.1 Evaluating the second decomposition method on the multi-level random benchmark

Table 6 gives the results for the second decomposition method on the multi-level random
benchmark. We compare this method with the classical model. Here zip (respectively tip)
corresponds to the optimal value (respectively CPU time) of the second decomposition method
using the first method as a subroutine, and z f

best (respectively t f
best) is the value (respectively the

CPU time) of the best solution found within one hour of computation. For the classical model
only 6 of 24 instances are solved to optimality within one hour. This is because the model
does not exploit the geometry: it considers the full instance instead of dividing it into flight
levels, drastically increasing the complexity of the computations. In contrast, the decomposition
method benefits from the geometry of the instances and the weak interdependency between the
flight levels: every instance is solved to optimality within 9 s.

6 Conclusions

We began by designing an optimization model for air conflict resolution. We first designed a
graph in which the vertices correspond to maneuvers and the edges link conflict-free maneuvers
of distinct aircraft. A solution corresponds to a maximum clique of minimum cost in this graph.
The costs of the vertices depend on the vertices belonging to the maximum clique. This makes
our model a new variant of the search for a maximum clique of minimum weight. The main
advantage of our model is its flexibility, arising because the solution process is separated from
the modeling of the problem. The framework remains valid under a wide range of assumptions,
and we will in the future be able to compare this model to other models.

Since the clique search problem is NP-hard, we expected that the solution time should
be sensitive to the number of maneuvers per aircraft. Moreover, in practice the set of aircraft
has weak geometric dependencies that could be exploited. However, these dependencies do
not appear explicitly in the model, and we designed two decomposition methods to take
advantage of these features. The first is a sequential MILP that iteratively solves the problem
while changing the discretization. This method provides a trade-off between efficient solutions
and computational time. The second decomposition uses this method as a subroutine in a
metaheuristic exploiting the geometry of the instances by solving pieces locally before finding a

23

http://dx.doi.org/10.1016/j.ejor.2016.07.008


Preprint manuscript, see final version http://dx.doi.org/10.1016/j.ejor.2016.07.008

Table 6: Dimensions of instances and results for the second decomposition method on the
multi-level random benchmark

Size Solution

Case |F | |L| zip nodes tip CPLEX z f
best t f

best
Calls

M100,10 100 10 6.27 0 3.01 20 5.16 2692.44
M100,12 100 12 4.96 0 1.49 24 4.96 2310.54
M100,14 100 14 4.93 0 0.54 28 4.93 2066.45
M100,16 100 16 3.92 0 0.95 32 3.92 1975.94
M100,18 100 18 3.33 0 0.61 36 3.33 1964.45
M100,20 100 20 2.98 0 0.39 40 2.98 1712.24
M150,10 150 10 18.15 0 2.85 20 23.05 3600
M150,12 150 12 12.45 0 2.47 24 19.05 3600
M150,14 150 14 9.67 0 1.16 28 17.03 3600
M150,16 150 16 9.03 0 1.71 32 16.15 3600
M150,18 150 18 7.05 0 0.9 36 12.48 3600
M150,20 150 20 2.68 32 0.62 40 6.12 3600
M200,10 200 10 13.4 35 5.63 20 45.2 3600
M200,12 200 12 12.71 0 4.03 24 31.02 3600
M200,14 200 14 11.97 25 4.42 28 29.45 3600
M200,16 200 16 12.04 0 3.5 32 22.08 3600
M200,18 200 18 8.15 0 1.85 36 18.45 3600
M200,20 200 20 5.36 0 3.3 40 12.45 3600
M250,10 250 10 30.24 234 8.12 20 101.35 3600
M250,12 250 12 24.15 42 8.1 24 80.15 3600
M250,14 250 14 21.45 0 5.12 28 78.11 3600
M250,16 250 16 18.04 0 4 32 64.15 3600
M250,18 250 18 16.41 0 4.26 36 24.48 3600
M250,20 250 20 11.05 0 3.81 40 21.35 3600

global solution.
We tested our model on complex structured instances. The computational times were low

(less than 15 s for instances with up to 20 aircraft). For larger instances, the times slightly
increase but remain almost real-time. The simulations indicate that the model is sensitive to the
number of maneuvers. The first decomposition method provides an efficient way to solve the
problem according to the user’s preferences, which may be time- or cost-oriented. The second
procedure solved instances with up to 250 aircraft spread over up to 20 flight levels in less than
5 s, whereas the original model could not find the optimal solution within an hour.

Future research will introduce stochastic elements: we could consider errors in the trajectory
predictions or introduce wind effects to make the study more realistic. We plan to use real-life
instances, particularly instances involving altitude changes, to validate our model. The second
decomposition method is particularly appropriate for such instances.
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