Thibault Lehouillier

Jérémy Omer

François Soumis

Guy Desaulniers

Two decomposition algorithms for solving a minimum weight maximum clique model for the air conflict resolution problem

Keywords: Air Traffic Control, Conflict Resolution, Mixed Integer Linear Optimization, Graph Theory, Decomposition Methods

la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Context: Challenges of air traffic control

In recent years air traffic management (ATM) has attracted increasing attention, and research has focused on advanced decision algorithms. Such automated tools will be key components of future ATM systems such as the Single European Sky ATM Research (SESAR) SESAR Joint Undertaking (2012) project in Europe and the Next Gen Joint Planning and Development Office (2008) program in the United States. Optimization algorithms for air traffic control (ATC) are particularly relevant in the current context of growing traffic, where airspace capacity and safety become concerns. The latest long-term forecast from EUROCONTROL predicts that traffic demand will increase by 20% to 80% between 2012and 2035EUROCONTROL (2013)). A simulation-based study performed by [START_REF] Lehouillier | Interactions between operations and planning in air traffic control[END_REF] shows that for a 50% increase in traffic, the controllers in charge of busy sectors would have to resolve an average of 27 conflicts per hour. Decision tools are essential in such an environment.

Literature review

A fundamental challenge of ATC is the air conflict resolution (CR) problem. A conflict occurs when two aircraft fail to respect predefined horizontal and vertical separation distances of respectively 5 NM and 1000 ft, as illustrated in Figure 1. To resolve conflicts, the controllers impose speed, heading, or altitude-change maneuvers. Given the current position, speed, acceleration, and predicted trajectory of a set of aircraft, the CR problem consists in identifying the conflict-free maneuvers that minimize a given cost function. The CR problem has been widely studied. We provide a synthesis of the studies that had the greatest influence on our work; a more complete literature review may be found in Martín-Campo's thesis [START_REF] Martín-Campo | The collision avoidance problem: Methods and algorithms[END_REF]. Because aircraft trajectories are time-continuous, the most natural approach is to model the problem using optimal control [START_REF] Zhou | Robust and optimal control[END_REF]. Analytical solutions can be found for only the simplest cases, but the models can be solved numerically using nonlinear programming techniques. For instance, Raghunathan et al. [START_REF] Raghunathan | Dynamic optimization strategies for three-dimensional conflict resolution of multiple aircraft[END_REF] use a time discretization of the problem to derive solutions for instances with more than two aircraft. One difficulty is that the nonlinear program (NLP) is nonconvex, so the global optimum cannot be found in a reasonable time and the solution is sensitive to the starting point.

Several heuristics have been developed to find feasible solutions quickly. [START_REF] Durand | Automatic aircraft conflict resolution using genetic algorithms[END_REF] and [START_REF] Meng | Flight conflict resolution for civil aviation based on ant colony optimization[END_REF] develop ant colony algorithms, where maneuvers are chosen from a finite discrete set of heading changes performed at constant speed. Alonso-Ayuso et al. [START_REF] Alonso-Ayuso | A VNS metaheuristic for solving the aircraft conflict detection and resolution problem by performing turn changes[END_REF] adapt a variable neighborhood search algorithm and consider only heading changes. Other methods use maneuvers extracted from a prescribed set [START_REF] Vivona | Pattern-based genetic algorithm for airborne conflict resolution[END_REF], particle swarm optimization (see [START_REF] Gao | Cooperative multi-aircraft conflict resolution based on co-evolution[END_REF] for heading changes), or neural networks (see [START_REF] Durand | Neural nets trained by genetic algorithms for collision avoidance[END_REF] and Christodoulou and Kontegeorgous Christodoulou and Kodaxakis (2006) for speed changes). These methods are fast, but convergence is not guaranteed.

Mixed integer linear and nonlinear programming provide powerful theoretical frameworks for CR. With the realistic restriction that the aircraft perform at most one maneuver at the initial time, [START_REF] Pallottino | Conflict resolution problems for air traffic management systems solved with mixed integer programming[END_REF] exploit the geometry of the separation constraints to develop two mixed integer linear programs (MILPs) that allow either a speed change with a constant heading or a heading change with a constant speed. [START_REF] Vela | Near real-time fuel-optimal en route conflict resolution[END_REF] develop an MILP that allows both speed and heading changes, and Christodoulou and Costoulakis Christodoulou and Costoulakis (atia) describe a nonlinear model for threedimensional CR. The MILP of Alonso-Ayuso et al. [START_REF] Alonso-Ayuso | Collision avoidance in air traffic management: A mixed-integer linear optimization approach[END_REF] allows both velocity and altitude changes. In Alonso-Ayuso et al. (2012), Alonso-Ayuso et al. extend the model of [START_REF] Pallottino | Conflict resolution problems for air traffic management systems solved with mixed integer programming[END_REF] by replacing the instantaneous speed changes with continuous changes. [START_REF] Schouwenaars | Safe trajectory planning of autonomous vehicles[END_REF] and [START_REF] Omer | Hybridization of nonlinear and mixed-integer linear programming for aircraft separation with trajectory recovery[END_REF] use a time-based discretization of the optimal control formulation. [START_REF] Vela | A mixed integer program for flight-level assignment and speed control for conflict resolution[END_REF] and [START_REF] Omer | A space-discretized mixed-integer linear model for air-conflict resolution with speed and heading maneuvers[END_REF] develop MILPs with a space discretization that focus on the main points of interest of the CR.

In the ATM field, graph theory has primarily been used for air traffic flow management (ATFM) Bertsimas andPatterson (1998, 2000). In ATC, conflicts between aircraft are generally modeled by a graph in which the vertices represent the different aircraft and the edges link pairs of conflicting aircraft. [START_REF] Vela | Understanding conflict-resolution taskload: Implementing advisory conflict-detection and resolution algorithms in an airspace[END_REF] and [START_REF] Sherali | An airspace planning model for selecting flight-plans under workload, safety, and equity considerations[END_REF] use conflict graphs in their models. [START_REF] Resmerita | A framework for conflict resolution in air traffic management[END_REF] study a priori CR by developing a multi-agent system where each aircraft must choose a path in a resource graph in which the vertices represent zones of the airspace and where the chosen paths must be conflict-free. [START_REF] Barnier | Graph coloring for air traffic flow management[END_REF] assign different flight levels to aircraft with intersecting routes by looking for maximum cliques in a graph defining an assignment of all the aircraft to a set of given flight levels.

Contribution statement

We present a formulation of the CR problem as a variant of the minimum-weight maximumcardinality clique (MWMCC) problem. A preliminary study is presented in Lehouillier et al. (2015b,a). We design a graph in which the vertices represent possible aircraft maneuvers and the edges link conflict-free maneuvers of different aircraft. The innovation of this model is its cost structure. The costs of the vertices are not known a priori since they depend on which maneuvers are in the clique. The model is flexible because it separates the solution process from the modeling of the aircraft dynamics and their maneuvers. As a consequence, our mathematical framework remains valid for any hypotheses on the aircraft dynamics and maneuvers, the computation of the separation distances, and the cost evaluation. This feature highlights its robustness, which is important in ATC because we must resolve many conflicts.

We have made several significant improvements to the model in Lehouillier et al. (2015b,a). First, we have corrected the cost computation. Second, our key contribution is that we have developed two decomposition algorithms to address the explosion of the number of vertices that occurs in large instances. The first algorithm is a sequential mixed integer linear optimization (SMILO) procedure that iteratively refines the discretization of the set of maneuvers without changing the number of vertices in the graph. This yields a trade-off between computational time and the cost of the optimal solution. This procedure is then used as a subroutine in a spatial decomposition that takes advantage of the geometric structure of the instances. The spatial decomposition is a large neighborhood search metaheuristic that exploits the weak interdependency between subsets of aircraft. Finally, we have tested our model on an extended benchmark that includes the structured instances with up to 20 aircraft described in Lehouillier et al. (2015b,a), and random instances with up to 60 aircraft on a single flight level and 250 aircraft over several flight levels. The results show that automated CR can be performed in a few seconds for large and dense areas of the airspace.

Problem Formulation

In this section, we discuss the modeling of the aircraft dynamics and maneuvers, the computation of the separation distances, and the cost evaluation. The choices made in this section represent a possible modeling of the problem. However, they are independent of the solution method, so considering other possibilities would not impact the validity of our overall method.

Modeling of aircraft dynamics

As is standard in the literature, we use a three-dimensional point-mass model for the aircraft dynamics:

dp x dt = V cos γ cos χ (1
)
dp y dt = V cos γ sin χ (2) dp z dt = V sin γ (3) dγ dt = g 0 V (n cos φ -cos γ) (4) dχ dt = g 0 V n sin φ cos γ (5) dV dt = F T -F D m -g 0 sin γ (6)
The position of the aircraft is given by the coordinates (p x , p y , p z) of its center of gravity in a local coordinate system, (p x ,p y) being its coordinates in a horizontal plane and p z its altitude.

The aircraft flies at speed V and the angles χ, φ, and γ correspond respectively to its heading, roll, and pitch. The variables F T and F D are the norms of the thrust and drag forces respectively, m is the aircraft mass, n is the load factor, and g 0 is the gravitational acceleration.

We assume that aircraft follow their trajectories with a stepwise constant acceleration. Maneuvers are executed with a constant acceleration and yaw rate, and the speed vector remains constant between two consecutive maneuvers. This assumption is realistic because it respects the time-continuity of speed, and it corresponds to a setting where maneuvers are performed smoothly. Other speed changes could be considered, and they would impact only the computation of the separation distances and the maneuver costs. In the remainder of this article, F = 1; N denotes the set of aircraft.

Aircraft maneuvers

Types of maneuvers

We consider maneuvers of the following types:

• Variable NIL refers to the null maneuver, i.e., no maneuver is performed.

• Variable H θ is a heading change by an angle θ ∈ [-π; π]1 .

• Variable S δ is a relative speed change of δ%. We use relative speed changes because they are used in large-scale projects such as ERASMUS Brochard (2009).

• Variable V δh is a change of δh flight levels.

Figure 2 describes the geometry of the heading change and the flight-level change. Heading changes are performed in a turning-point fashion as depicted in Figure 2a. Flight-level changes are followed by a return to the initial flight level, as in Figure 2b. We define M = ∪ n f =1 M f to be the set of all possible maneuvers, M f being the set of maneuvers for aircraft f ∈ F .

Dynamics of the maneuvers

Since the analysis carried out by [START_REF] Omer | Hybridization of nonlinear and mixed-integer linear programming for aircraft separation with trajectory recovery[END_REF] concludes that considering instantaneous maneuvers can lead to significant errors in the separation distances, we use a model with constant acceleration [START_REF] Paielli | Modeling maneuver dynamics in air traffic conflict resolution[END_REF]. In [START_REF] Paielli | Modeling maneuver dynamics in air traffic conflict resolution[END_REF], Paielli states that the typical acceleration during a speed adjustment for commercial aircraft is of the order of 0.4 kn/s or 0.02 g. This value is chosen to respect the comfort of the passengers. Heading changes are approximated by a steady turn of constant rate and radius, given by the following equations:

ω = dχ dt = g 0 tan φ V (7) r = V 2 g 0 tan φ (8)
We also consider the altitude maneuvers to be dynamic. The changes of flight level are performed at a vertical speed that is a function of thrust, drag, and true airspeed. Details on the computation of the vertical speed can be found in the BADA user manual BAD (2011).

Trajectory recovery

We consider that each aircraft follows a 4D contractual trajectory, which represents a compromise between the user's preferences and the capacity constraints of the network. The trajectories must satisfy time and space requirements over a sequence of 4D points; noncompliance leads to penalty fees. It is therefore important to ensure that after a maneuver is performed the aircraft recovers its initial trajectory as soon as possible. Ensuring strict velocity control can be costly and almost impossible in practice. Time recovery is therefore not required, but it is encouraged via a penalty on the time shift between the trajectory without conflict and the trajectory after a maneuver. We use the method of [START_REF] Omer | Hybridization of nonlinear and mixed-integer linear programming for aircraft separation with trajectory recovery[END_REF] to compute the penalty costs: the penalty is estimated as the total cost induced by a time recovery of the 4D trajectory, at a speed depending on the sign of the shift.

Maneuver costs

We now discuss the computation of the maneuver cost. We wish to highlight that although the computations can be complex they do not interfere with the solution method described in Section 4. Moreover, more complex cost models could be considered without changes to the solution method.

For a jet commercial aircraft f with constant altitude, the fuel consumption by time and distance unit is

C t, f t, V f (t) = c 1, f 1 + V f (t) c 2, f F T, f (t) (9) C d, f t, V f (t) = C t, f t, V f (t) V f (t) (10)
where the variables c 1, f and c 2, f are constants that depend on the aircraft type f . The approach depends on the type of maneuver.

Speed change Consider a change of speed V f = V n f (1 + δ) for a time t, where variable V n f is the nominal speed of aircraft f . Let C speed be the cost of the maneuver. It is the sum of:

1. the cost of the additional fuel burnt during the maneuver, C f s ; 2. the penalty for not respecting the 4D contract, C 4D s .

Thus,

C speed = C f s + C 4D s (11)
To compute C f s , it is useful to distinguish the cost incurred during the transition from V n f to V f , C t s , and that incurred on the portion of the trajectory flown with the new speed, C n s :

C f s = C t s + C n s (12
)
Let t δ,V be the time required to go from V n f to V f . We compute C t s as follows:

C t s = t δ,V 0 C t, f t, V f (t) dt -t δ,V C t, f t, V n f (13) The cost C n s is C n s = (t -t δ,V) C t, f (t, V f) -C t, f (t, V n f) (14)
The penalty C 4D s is deduced from the delay d 4D s caused by the maneuver, which is computed as follows:

d 4D s = t δ,V 0 V f (t)dt + (t -t δ,V)V f -tV n f (15)
A recovery speed that depends on the sign of d 4D s is used to return to the 4D trajectory, inducing the cost C 4D s .

Heading change Let C heading be the cost of a heading change by an angle θ for a period t. It is the sum of:

1. the cost of the additional distance induced by the maneuver, C d h ;

2. the penalty for not respecting the 4D contract, C 4D h .

Thus,

C heading = C d h + C 4D h (16)
To recover the spatial trajectory, the aircraft performs a turn with an angle -2θ as detailed in Figure 3.

θ l 2 = V f (δ t - t θ) l 4 = V f (δ t - t θ) l 3 = 2V f t θ l 5 = V f t θ l 1 = V f t θ l p 1 = 2r sin π-θ 2 l p 2 = l 2 cos θ l p 4 = l 4 cos θ l p 3 = 4r sin π-θ 2 l p 5 = 2r sin π-θ 2 r
The aircraft flies an extra distance d given by

d = 5 ∑ i=1 l i -l p i (17)
where the expressions for l i and l p i are given in Figure 3. The cost of the extra fuel burnt over d is then computed as follows:

C h d = C d, f (t, V f)d (18)
The penalty C 4D h is then deduced from the delay d 4D h due to the extra distance d:

d 4D h = d V n f (19)
A recovery speed that depends on the sign of d 4D h is used to return to the 4D trajectory, inducing the cost C 4D h .

Flight-level change Consider a change of δh flight levels during a period t. Figure 4 illustrates the geometry of the maneuver for an example where an aircraft climbs one level.

n FL n+1 γ d γ c l1 = Vf tδγ l 7 = V f t δγ l 5 = V f t δγ l 3 = V f t δγ l 2 = V c f t c f l6 = V d f t d f l p 1 = 2r sin π-γc 2 l p 5 = l5 l p 5 = V c f t c f cos γc l p 3 = 2r sin π-γc 2 l p 5 = 2r sin π-γ d 2 l p 7 = 2r sin π-γ d 2 l p 6 = V d f t d f cos γ d l 5 = V f (δ -t c f -t d f)
r Let C FL be the cost of this maneuver. It is the sum of:

1. the extra cost during the ascent and descent, denoted C a FL and C d FL , respectively;

2. the difference between the cost on the initial flight level and that on the new flight level, denoted C δh FL ;

3. the cost of the additional distance d, denoted C d FL ;

4. the 4D contract penalty C 4D FL .

Thus,

C FL = C a FL + C d FL + C δh FL + C d FL + C p FL (20)
C a FL and C d FL are derived by

C a FL = t a C a,t (f , V a f) -C t, f (t, V n f) (21) C d FL = t d C d,t (f , V d f) -C t, f (t, V n f) (22) (23
)
where t a , t d are the durations of ascent and descent, C a,t and C d,t are the fuel costs during the ascent and descent, and V a f and V d f represent the ascent and descent speeds, respectively. The fuel consumption and the ascent and descent speeds are taken from the BADA tables for the corresponding aircraft types.

The difference in the fuel consumption between the two levels is as follows:

C δh FL = (δt -t a -t d)(C FL n+δh -C FL n) (24
)
where C FL n+δh and C FL n denote the fuel consumption per time unit at the new and initial flight level, respectively. The fuel burnt on the additional distance d is as follows:

C d FL = C d, f (t, V f)d (25)
where the distance d is

d = 7 ∑ i=1 l i -l p i (26)
and the expressions for l i and l p i are given in Figure 4. The computation of the 4D contract penalty, C 4D FL , is similar to that for the heading maneuvers.

Aircraft separation

In the context of aircraft separation we use the following notation:

• T : time horizon for the conflict resolution.

• p i (t) ∈ R 3 : position vector of aircraft i at time t. The variables p i,x (t), p i,y (t), and p i,z (t) denote respectively the abscissa, ordinate, and altitude components of the position vector.

• s i (t) ∈ R 3 : speed vector of aircraft i at time t. The variables s i,x (t), s i,y (t), and s i,z (t) denote respectively the abscissa, ordinate, and altitude components of the speed vector.

• a i (t) ∈ R 3 : acceleration vector of aircraft i at time t. The variables a i,x (t), a i,y (t), and a i,z (t) denote respectively the abscissa, ordinate, and altitude components of the acceleration vector.

Let i and j be two aircraft applying maneuvers m i and m j , respectively. Aircraft i and j are said to be separated at time t if and only if at least one of the following constraints holds:

d h ij (t) 2 = (p i,x (t) -p j,x (t)) 2 + (p i,y (t) -p j,y (t)) 2 ≥ D 2 h,min (27)
d v ij (t) 2 = (p i,z (t) -p j,z (t)) 2 ≥ D 2 v,min (28)
At any time t ∈ T , we may have both, one, or neither aircraft maneuvering. The set T can thus be divided into intervals where both i and j have a constant acceleration. For each interval, we find the time at which the aircraft are the closest to check whether the separation constraints hold. Let T k be an interval, and let t 0 ∈ T be the starting time of maneuver m i . If we assume that m i is applied with a constant acceleration, we obtain the position and the speed vector of i at time t 0 + t with t such that tt 0 ≤ |T k |:

p i (t 0 + t) = p i (t 0) + (t -t 0)s i (t 0) + (t -t 0) 2 2 a i (t 0) (29) s i (t 0 + t) = s i (t 0) + (t -t 0)a i (t 0) (30)
Let p h ij (respectively s h ij , a h ij) denote the horizontal position (respectively the speed and the acceleration) of aircraft j relative to aircraft i. We define

d h ij (t + τ) = ||p h ij (t + τ)|| = ||p h ij (t) + τs h ij (t) + τ 2 2 a h ij (t)|| where τ ≥ 0. Let τ ij ∈ argmin τ≥0 d h ij (t + τ) 2 and t h ij ∈ argmin t∈T d h ij (t) 2 . We have t h ij =      0 if τ ij = 0 |T k | if τ ij ≥ |T k | τ ij otherwise
where |T k | is the length of interval T k . Aircraft i and j are horizontally separated during interval T if and only if

d h ij (t h ij) 2 ≥ D 2 h,min (31)
Similarly, aircraft i and j are vertically separated during interval T if and only if

d v ij (t v ij) 2 ≥ D 2 v,min (32)
Let I h i,j and I v i,j be the intervals during which i and j are not separated horizontally and vertically, respectively. Then i and j are separated if and only if

I h i,j ∩ I v i,j = ∅ (33)

Modeling of the CR problem as an MWMCC problem

We now describe how the CR problem can be modeled as an MWMCC problem. This model is based on a preliminary study presented in Lehouillier et al. (2015b,a).

Graph theory definitions

Let G = (V, E) be a simple undirected graph with vertex set V and edge set E ⊆ V × V.

A clique in G is a vertex set C with the property that each pair of vertices in C is linked by an edge:

C ⊆ V is a clique ⇔ ∀(u, v) ∈ C × C, u = v, (u, v) ∈ E (34)
A maximum clique in G is a clique that is not a subset of any other clique in G. The cardinality of a maximum clique of G is called the clique number and denoted w(G). Let c : V → R be a vertex-weight function associated with G. A maximum clique of minimum weight in G is a maximum clique C that minimizes ∑ v∈C c(v).

A stable set S ⊆ V is a subset of vertices such that no two are adjacent in G. A bipartite graph is a graph in which the vertices can be partitioned into two distinct stable sets, V 1 and V 2 . Each edge of the graph then connects one vertex of V 1 to a vertex of V 2 . This concept can be extended to k-partite graphs, where the vertex set is partitioned into k distinct stable sets.

The density of a graph G = (V, E) is defined as the ratio of the number of edges |E | to the number of edges in a complete graph with |V | vertices:

d G = |E | |V |(|V | -1) 2 (35)

Graph construction

We use a conflict graph G = (V, E) to model the CR problem.

Defining the vertices

The set of vertices is V = 1; |M| , and V f is the set of vertices corresponding to aircraft f . In emergency scenarios where feasibility is a concern, one can introduce n vertices corresponding to expensive emergency maneuvers. Such maneuvers can for example correspond to those implemented by the Terminal Collision Avoidance system FAA (2011) or those described by [START_REF] Schouwenaars | Safe trajectory planning of autonomous vehicles[END_REF]. However, since feasibility has not been an issue in our tests, we did not add these vertices.

Defining the edges

Let (i, j) ∈ V × V be a pair of vertices representing maneuvers (m i , m j) ∈ M × M of aircraft (i, j) ∈ F × F . For i = j, we write m i m j if no conflict occurs when aircraft i performs maneuver m i while j performs m j . The set of edges E corresponds to the pairs of maneuvers performed by two aircraft without introducing conflicts:

E = (i, j) ∈ V × V, i = j : m i m j (36)

Relative density

We can define a measure of density based on the structure of the conflict graph. There is no edge between two different maneuvers of a given aircraft, which yields Observation 3.1.

Observation 3.1 For all f ∈ F , V f is a stable set, i.e., there is no edge linking two distinct vertices of V f . Hence, the graph G is |F |-partite.

We define the relative density of G in Equation (37), which is an adaptation of the density of a graph to the conflict graph using Observation 3.1. This quantity is more meaningful, since it compares the number of edges of a conflict graph to the maximum number of edges a conflict graph can have.

d * G = |E | |V |(|V | -1) 2 -∑ f ∈F |M f |(|M f | -1) 2 (37)

Conflict-free solution: Formulation and example

As mentioned earlier, given the current position, speed, acceleration, and planned trajectories of a set of aircraft, solving the CR problem involves finding a conflict-free set of maneuvers that minimizes the total cost. Observation 3.2 links the cliques in G to the CR problem:

Observation 3.2 Let C be a clique in graph G. Then C represents a set of conflict-free maneuvers for a subset of F of cardinality |C|.

Observation 3.2 indicates that finding a set of conflict-free maneuvers for F is equivalent to finding a clique of G of cardinality |F |. We can derive the following proposition:

Proposition 3.3 If a conflict-free solution exists, then ω(G) = |F |. Otherwise, ω (G)
is the maximum number of flights involved in a conflict-free situation. Figure 5 presents an example with three aircraft and the corresponding solution. If each aircraft follows its planned trajectory as indicated in Figure 5a, there will be conflicts. We assume here that, in addition to the null maneuver, only two heading changes (±30 •) are allowed. We build the CR graph shown in Figure 5b. The graph is multipartite, with each stable set representing the set of possible maneuvers for one aircraft. Solving the CR problem is then equivalent to searching for a minimum-weight clique of three vertices, i.e., a triangle. Figures 5c and5d show the solution and the triangle of minimum weight respectively. We define the problem CR M as the restriction of the CR problem to the set of maneuvers M. Using Observations 3.2 and 3.3, we can restate the CR M problem as follows: searching for a conflict-free solution of minimum cost is equivalent to solving the CR M problem consisting of finding a clique of maximum cardinality and minimal cost in the graph G.

As stated in Section 2.2, the cost of a maneuver depends on the time during which it is executed. One way to model this would be to discretize the execution time and to create the vertices accordingly. It would be straightforward to compute the cost of the vertices, using the method described in Section 2.2. The drawback of this method is the explosion of the number of vertices, which will drastically increase the computational time. To address this issue, we decided to keep the graph small by considering one vertex per maneuver. With this choice, the cost of the vertices cannot be determined a priori, since they depend on the maneuvers executed by the other aircraft. In other words, the cost of each vertex depends on the vertices in the clique. This problem is a new variant of the maximum-clique minimum-weight problem, where the weights are on the vertices, but they depend on the vertices in the clique.

Cost computation

For ease of presentation, and without loss of generality, in this section we make no distinction between a vertex and the corresponding maneuver. As explained above, the cost of a maneuver depends on its execution, which depends on the maneuvers performed by the other aircraft. As a consequence, we need to define the cost of the edges before the cost of the vertices.

Cost of the edges

An edge e = (i, j) will be considered as a pair of maneuvers. We compute the cost of edge e = (i, j) as a pair composed of the costs of maneuvers i and j, denoted C (i,j) i and C

(i,j) j . These costs correspond to an execution time t j i which is the minimum time for which maneuvers i and j must be performed to avoid a conflict when at least one of the aircraft returns to its original trajectory.

Cost of the vertices

To determine the cost of maneuver i, denoted c i , we need to compute the time t i for which it is performed. If i is not in the optimal solution, then t i = 0. Otherwise,

t i = max j∈V ∩C t j i (38)
Equation (38) states that maneuver i has to be applied for a sufficient time to be conflict-free with every other chosen maneuver. Indeed, if aircraft i and j are conflict-free when they execute their maneuvers for a duration t, then they will remain conflict-free if they perform their maneuvers for T > t. This leads to

c i =    max j∈V ∩C C (i,j) i if i ∈ C 0 otherwise

Methodology

MILP formulation

Motivation

Finding a maximum clique in an arbitrary graph is a well-known optimization problem that is N P-hard; see Karp [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. The problem has been thoroughly studied and exact and heuristic methods have been developed. For an overview of the theoretical results and existing methods, see Bomze et al. [START_REF] Bomze | The maximum clique problem[END_REF] and [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF].

In the existing methods, the weights of the vertices are known beforehand, but in our model the costs of the vertices depend on which vertices are in the clique. Existing algorithms cannot be used, and we formulate our problem as an MILP that can be solved by any MILP solver.

Formulation

The decision variables of the model relate to the vertices of the graph. They correspond to the choice of the vertices in the clique and the cost of each vertex:

• x i = 1 if vertex i is in the maximum clique 0 otherwise • c i ∈ R + is the cost of vertex i.
The clique search can then be modeled via the following MILP, denoted MIP:

minimize ∑ i∈V c i (39) subject to x i + x j ≤ 1, ∀(i, j) ∈ E (40) ∑ i∈V x i = N (41) c i ≥ C (i,j) i (x i + x j -1), ∀(i, j) ∈ E (42) x i ∈ {0; 1}, ∀i ∈ V (43)
c i ∈ R + , ∀i ∈ V (44)
The objective function (39) minimizes the total maneuver cost. Constraints (40) are clique constraints stating that two nonadjacent vertices must not be part of the clique; this means that two conflicting maneuvers must not be part of the solution. Constraint (41) is based on Proposition 3.3, which defines the cardinality of the maximum clique. Constraints (42) compute the cost of the vertices: if a vertex is in the maximum clique, then its cost must be greater than the cost on every edge connecting it to the other vertices in the clique; this is the only constraint on the vertex cost. Constraints (43)-(44) are binarity and positivity constraints, respectively.

Strengthening the linear relaxation

Strengthening the linear relaxation of an MILP can reduce the computational time by providing better lower bounds. We added the following constraints:

∑ j∈V f x j = 1, ∀ f ∈ F (45)
Constraints (45) ensure that each aircraft is assigned a maneuver. These constraints were not included in the original formulation because constraints (40), (41), and (43) make them redundant. Each set of nodes M f is a stable set, meaning that only one maneuver can be assigned to each aircraft in a clique. Since (41) ensures that the number of vertices in the clique is equal to the number of aircraft, (45) is always satisfied in a solution of (40)-(44). However, these constraints improve the linear relaxation because they prevent solutions where the fractional maneuvers are all assigned to the same aircraft.

Decomposition methods

The motivation for decomposition is two-fold. First, since the MWMCC problem is N P-hard, the computational time will increase with the size of the instances. The size of the sets of maneuvers can also have an impact. Second, in practice the instances have important geometric characteristics: aircraft on different flight levels are weakly interdependent, meaning that they will almost never interfere with each other. However, these geometric considerations do not appear explicitly in our model. We design two decomposition methods. In Section 5 we will analyze their effectiveness.

SMILO procedure

In this subsection, we present a SMILO procedure for the CR problem. This procedure iteratively solves several MILPs on graphs with the same number of vertices in which the discretization values are updated in a fashion similar to a trust region method. The goal is to obtain a trade-off between the computational time and the cost, and to study the impact of the chosen discretization. Algorithm 1 describes the SMILO procedure. We use the following parameters:

• F : set of aircraft; The procedure starts by storing the number of vertices representing speed and heading maneuvers for each aircraft. It sequentially solves the MIP until no improvement is achieved when updating the set of vertices M between two consecutive steps. The update of M depends on whether or not the current instance of the graph is feasible. If it is feasible, the update depends on the maneuver assigned to f in the current solution:

• v f min , v
• If f perfoms no maneuver, M f is erased, except for the N IL node. New sets of speed and heading maneuvers are added to F to obtain intervals centered around 0.

• If f performs a heading change of magnitude m, all the speed nodes are deleted from M f and the heading interval is replaced with an interval with 0 and m as extrema. The discretization step is chosen to retain n f χ heading nodes.

• If f performs a speed change of magnitude m, all the heading nodes are deleted from M f and the speed interval is replaced with an interval with 0 and m as extrema, depending on the sign of m. The discretization step is chosen to retain n f v speed nodes.

If the current instance is not feasible, all the parameters describing the maneuvers F are doubled, to allow for larger maneuvers while maintaining a constant number of vertices in the graph.

Algorithm 1 SMILO procedure for CR problem for f ∈ F do 3:

n f v ← v f max -v f min δ f v 4: n f χ ← χ f max -χ f min δ f χ 5: z c ← +∞ 6: while |z -z c | > 0.01 do 7: z ← z c 8: z ← SOLVE MIP(F , v 1 min , . . . , v N min , v 1 max , . . . , v N max , . . . , χ 1 min , . . . , χ N min , χ 1 max , . . . , χ N max , δ 1 v , . . . , δ N v , δ 1 χ , . . . , δ N χ) 9: if z < +∞ then 10: for f ∈ F do 11:
Let m be the maneuver of aircraft f in the last solution found 12:

if m is the null maneuver then 13:

Erase all the heading and speed nodes of aircraft f

for f ∈ F do 37: v f max ← 2v f max , χ f max ← 2χ f max , v f min ← 2v f min , χ f min ← 2χ f min , δ f v ← 2δ f v , δ f χ ← 2δ f χ 38: z c ← SOLVE MIP(F , v 1 min , . . . , v N min , v 1 max , . . . , v N max , . . . , χ 1 min , . . . , χ N min , χ 1 max , . . . , χ N max , δ 1 v , . . . , δ N v , δ 1 χ , . . . , δ N χ)

Second decomposition method

The second decomposition method is inspired by the POPMUSIC algorithm of [START_REF] Taillard | Popmusic -partial optimization metaheuristic under special intensification conditions[END_REF]. This metaheuristic is designed for combinatorial optimization problems that can be partially optimized. It generates neighborhoods that are a better fit for large problems. These neighborhoods need not be enumerated, since they can be implicitly explored with an optimization procedure. Algorithm 2 details the method.

Algorithm 2 Large Neighborhood Search (LNS) Algorithm

O ← O ∪ {s i }
To apply Algorithm 2, the user must define four key elements:

1. a definition of the pieces of a solution;

2. the selection procedure;

3. a definition of the relatedness of solution pieces;

4. the subproblem optimizer.

The algorithm works on a solution divided into p pieces. The algorithm first selects a piece p 0 to be optimized. It then creates a subproblem containing the r pieces of the solution that are the most closely related to p 0 . If solving the subproblem yields no improvement in p 0 , then this piece is added to the set of chosen pieces (labelled O). Otherwise, O is reset to the empty set. The algorithm repeats the process until the set O contains all the pieces of the solution.

In a nutshell, the algorithm iteratively tries to improve the current solution by performing neighborhood searches to improve every piece of the solution. The neighborhood of a piece of the solution is defined according to a user-specified relatedness criterion.

We apply Algorithm 2 to large instances with the aircraft randomly allocated to different flight levels. The four elements of our application are:

1. Each solution piece corresponds to one flight level.

2. We select pieces by starting from the lowest flight level.

3. The relatedness is the vertical distance between the flight levels.

4. The subproblem optimizer is Algorithm 1.

Algorithm 3 gives the details of the overall procedure. The set of aircraft is sorted by flight level. In the first loop (line 3), Algorithm 1 is used to optimize the problem for the corresponding aircraft, allowing only horizontal maneuvers. In the second part of the algorithm (line 10), for each flight level, Algorithm 1 is used to optimize the problem for the corresponding aircraft. Vertical maneuvers are now allowed, but the constraints consider the maneuvers of the set of aircraft on the adjacent levels. In other words, we authorize all types of maneuvers on the current flight level, but we fix the maneuvers of the aircraft on the adjacent levels to those that appear in the last solution found. Algorithm 3 stops when no improvement can be achieved. R i : resolve conflicts for FL i allowing altitude maneuvers, given the maneuvers of s i-1 and s i+1

For this study, we apply Algorithm 3 to instances with the aircraft randomly allocated to several flight levels. However, Algorithm 3 could be applied to other types of instances. Adapting the relatedness between subsets of aircraft would divide the aircraft set into different clusters.

Results

In this section, we validate our model using a benchmark of complex two-dimensional and three-dimensional instances. The data used to compute the maneuvers and their costs were extracted from the BADA table for the Airbus A-320. The tests were performed on a computer equipped with a 3.4-GHz Intel Core i7-3770 processor and 8 GB of RAM. We implemented the algorithms in C++ and used CPLEX 12.5.1.0 CPL (2014) with its default options.

Our tables present the following information:

• Case: case configuration;

• |F |: number of aircraft;

• |V |: number of vertices;

• |E |: number of edges;

• d * : relative graph density;

• n: number of variables;

• m: number of constraints;

• z ip : optimal value (in kilograms of fuel);

• n nodes : number of branch-and-bound nodes;

• t l p : time (s) to solve continuous relaxation of MILP;

• t ip : time (s) to obtain z ip .

Single-level random benchmark

This benchmark consists of random instances, where the aircraft are uniformly distributed in a square sector with a side length of 50 NM. To avoid infeasible instances, we perform preprocessing before solving the problem: for each pair of aircraft that will lose separation within the first 30 s of observation, we randomly delete one of the two aircraft. We generate 15% more aircraft than the number desired to anticipate the effect of the preprocessing. If too many aircraft remain after the preprocessing, we randomly remove extra aircraft until the desired number is reached.

Multi-level benchmark

This benchmark contains instances that are more realistic. We generate more aircraft than for the single-level benchmark (from 50 to 200 aircraft in increments of 25). The aircraft generation is performed as in the single-level case. The aircraft are then randomly assigned to different flight levels, following a uniform distribution. We use M n,m to label the instance where n aircraft are assigned to m flight levels.

Computational results

Structured instances

Figure 7 shows the solutions for the instances of Figure 6. Figure 7a shows the optimal solution for R 8 : the aircraft perform a right turn of 5 • and avoid each other in a roundabout fashion before returning to their initial trajectories. Instance F 3, π 4 ,10 is solved symmetrically: each group of aircraft performs the same set of heading changes. The first aircraft of each group turns right by 5 • , while the second and third aircraft turn left by 5 • and 10 • respectively. Instance G 3,10 is also solved symmetrically: the horizontal and vertical groups perform the same set of maneuvers. The first set of simulations considers only horizontal with relative speed changes of ±2% , ±4%, and ±6% and heading changes of ±5 • , ±10 • , and ± 15 • . Table 1 gives the dimensions of the instances and the results for the original model. Section 5.3 gives the SMILO results for these instances. Algorithm 3 was not applied to this benchmark set because the inherent symmetry makes the design of a relatedness procedure not necessarily relevant.

The original model yields the optimal solution in real-time; complex problems with up to 20 aircraft can be solved in less than 15 s. This result is satisfying since the graph is dense. In the second simulation set, we introduce altitude maneuvers: the aircraft are allowed to move to an adjacent flight level. Table 2 gives the results. The solution times tend to slightly increase; this can be explained by the introduction of a new set of high-degree vertices. Every change of flight level is conflict-free with all the horizontal maneuvers. Nevertheless, the solution can still be computed quickly. These results are promising since our instances involve denser traffic than occurs in real-life situations.

Single-level random benchmark

Figure 8a shows a randomly chosen instance U 15 and Figure 8b shows the corresponding solution. The initial speed vectors are represented by dotted vectors, and the requested maneuvers are represented by solid vectors. The two aircraft circled in red changed their flight levels.

The results are reported in Table 3, where the figures are averages over 100 simulations. Table 4 gives the results for the single-level random benchmark with the addition of flight-level changes: the aircraft can climb to the next level or descend to the level below.

For some instances the computational time is now higher. To investigate this issue, we ran simulations for different numbers of possible maneuvers. The results showed that the computational time is sensitive to the number of vertices in a given instance. This observation motivated the SMILO procedure presented in Section 4.2.

Detailed results for the SMILO procedure on the benchmark without altitude changes

This simulation set was designed to explore two issues. The first is to identify the impact of the number of maneuvers on the objective function and the computational time. The second is to evaluate the performance of the SMILO procedure and to investigate the trade-off between the optimal value and the computational time.

We used four parameter sets: • A large discretization, with relative speed changes of ±6% and heading changes of ±15 • , yielding an objective function value z l ip in time t l ip .

• A medium discretization, with relative speed changes of ±2%, ±4%, and ±6% and heading changes of ±5 • , ±10 • , and ± 15 • , yielding an objective function value z m ip in time t m ip .

• A narrow discretization, with 12 relative speed changes between -6% and 6% with a step of 1% and heading changes between -15 • and 15 • with a step of 1 • . These parameters yield an objective function value z n ip in time t n ip ;

• The SMILO procedure with four speed changes and four heading changes, yielding an objective function value z SMILO in time t SMILO .

Table 5 gives the results of these simulations. The results show that the choice of the discretization size has a critical impact on the computational time. Going from a medium discretization to a narrow discretization divides the cost of the solution by 2 on average, but the solution time is 18 times higher on average. The SMILO results show that it provides a good trade-off between efficient solutions and computational time. The SMILO solutions are on average 41% more expensive than those for the medium discretization, but it takes 50% less time to find them. This is especially useful for the random instances, where the original optimization model seemed less efficient.

Figure 9 summarizes Table 5. Figure 9a shows the influence of the discretization on the quality of the best solution found and compares the SMILO solution to those obtained with the different discretizations. The SMILO solution is an intermediate between the solutions for the large and medium discretizations. Figure 9b compares the SMILO solution time with that for the large and medium discretizations; the solution times for the small discretization are omitted because the scale is different. The SMILO procedure needs less time than the medium discretization to find the optimal value for the available set of maneuvers.

Evaluating the second decomposition method on the multi-level random benchmark

Table 6 gives the results for the second decomposition method on the multi-level random benchmark. We compare this method with the classical model. Here z ip (respectively t ip) corresponds to the optimal value (respectively CPU time) of the second decomposition method using the first method as a subroutine, and z f best (respectively t f best) is the value (respectively the CPU time) of the best solution found within one hour of computation. For the classical model only 6 of 24 instances are solved to optimality within one hour. This is because the model does not exploit the geometry: it considers the full instance instead of dividing it into flight levels, drastically increasing the complexity of the computations. In contrast, the decomposition method benefits from the geometry of the instances and the weak interdependency between the flight levels: every instance is solved to optimality within 9 s.

Conclusions

We began by designing an optimization model for air conflict resolution. We first designed a graph in which the vertices correspond to maneuvers and the edges link conflict-free maneuvers of distinct aircraft. A solution corresponds to a maximum clique of minimum cost in this graph. The costs of the vertices depend on the vertices belonging to the maximum clique. This makes our model a new variant of the search for a maximum clique of minimum weight. The main advantage of our model is its flexibility, arising because the solution process is separated from the modeling of the problem. The framework remains valid under a wide range of assumptions, and we will in the future be able to compare this model to other models.

Since the clique search problem is N P-hard, we expected that the solution time should be sensitive to the number of maneuvers per aircraft. Moreover, in practice the set of aircraft has weak geometric dependencies that could be exploited. However, these dependencies do not appear explicitly in the model, and we designed two decomposition methods to take advantage of these features. The first is a sequential MILP that iteratively solves the problem while changing the discretization. This method provides a trade-off between efficient solutions and computational time. The second decomposition uses this method as a subroutine in a metaheuristic exploiting the geometry of the instances by solving pieces locally before finding a We tested our model on complex structured instances. The computational times were low (less than 15 s for instances with up to 20 aircraft). For larger instances, the times slightly increase but remain almost real-time. The simulations indicate that the model is sensitive to the number of maneuvers. The first decomposition method provides an efficient way to solve the problem according to the user's preferences, which may be time-or cost-oriented. The second procedure solved instances with up to 250 aircraft spread over up to 20 flight levels in less than 5 s, whereas the original model could not find the optimal solution within an hour.

Future research will introduce stochastic elements: we could consider errors in the trajectory predictions or introduce wind effects to make the study more realistic. We plan to use real-life instances, particularly instances involving altitude changes, to validate our model. The second decomposition method is particularly appropriate for such instances.

Figure 1 :

 1 Figure 1: Safety cylinder around an aircraft.

Figure 2 :

 2 Figure 2: Geometry of heading change and flight-level change.

Figure 3 :

 3 Figure 3: Geometry of the trajectory recovery following a heading change.

 θ

Figure 4 :

 4 Figure 4: Geometry of the trajectory recovery following a flight-level change.

FL

Figure 5 :

 5 Figure 5: Example: Instance and solution.

f

 max : minimum and maximum speed deviation allowed for aircraft f ; and heading discretization of the maneuvers of aircraft f ; of speed and heading nodes for aircraft f , computed using the values of v

 : set of aircraft randomly generated on p flight levels (FLs) S composed of pieces s 1 , . . . , s p 8: R 1 : resolve conflicts for FL 1 allowing altitude maneuvers, given the maneuvers of s 2 9: R p : resolve conflicts for FL p allowing altitude maneuvers, given the maneuvers of s p-1 10: for i = 2, . . . , p -1 do 11:

 This benchmark has three types of instances. The roundabout instances R n have n aircraft distributed on the circumference of a 100 NM radius; these aircraft fly toward the center at the same speed and altitude. The crossing flow instances F n,θ,d have two trails of n aircraft separated by d nautical miles that intersect each other at an angle θ. The grids G n,d are composed of two flow instances F n, π 2 ,d , with one instance translated 15 NM north-east of the other. Figure6gives an example of each instance.

Figure

 Figure 6: Examples

Figure

 Figure 7: Solutions of the examples

Figure 8 :

 8 Figure 8: Random instance U 15 and its solution

Figure 9 :

 9 Figure9: Influence of the discretization on the optimal value and the CPU time.

 Create a subproblem R i composed of the r pieces {s i 1 , . . . , s i r } most related to s i

	1: procedure LNS(r)
	2:	Input: Solution S composed of pieces s 1 , . . . , s p
	3:	O ← ∅
	4:	while O = {s 1 , . . . , s p } do
	5:	Select s i / ∈ O
	6:	
	7:	Optimize R i
	8:	if R i has been improved then
	9:	Update S
	10:	O ← ∅
	11:	else
	12:	

Table 1 :

 1 Dimensions of the instances and results for the virtual benchmark using only horizontal maneuvers

				Graph G		MILP		Solution
	Instance type Case	|F | |V |	|E |	d	m	n	z ip nodes	t l p	t ip
		R 4	4	52	612	0.6	104	1333	2.66	27 0.02	0.07
		R 8	8 104	2744 0.58	208	5705	5.34	75 0.02	0.51
	Roundabout	R 12	12 156	6300 0.56	312 12925	19.99	84 0.02	2.95
		R 16	16 208 11396 0.56	416 23225	42.73	39 0.02	6.99
		R 20	20 260 17756 0.55	520 36053	86.59	71 0.02 11.63
		F 1,60,10	2	26	102	0.6	52	259	1.32	0 0.02	0.05
		F 2,60,10	4	52	736 0.73	104	1581	2.66	0 0.02	0.06
		F 3,60,10	6	78	1980 0.78	156	4123	4	0 0.02	0.18
	Flow	F 4,60,10 F 5,60,10	8 104 10 130	3846 0.81 6349 0.83	208 260 12969 7909	5.34 6.68	57 0.02 0 0.02	0.57 0.9
		F 6,60,10	12 156	9483 0.85	312 19291	9.96	70 0.02	1.96
		F 7,60,10	14 182 13252 0.86	364 26883	13.3	0 0.02	1.44
		F 8,60,10	16 208 17659 0.87	416 35751	18.66	0 0.02	1.7
		F 9,60,10	18 234 19057 0.88	468 42579	30.18	10 0.02	1.79
		F 10,60,10	20 260 22563 0.87	520 47264	41.61	0 0.02	1.85
		G 2,1,10	4	52	787 0.78	104	1683	1.32	35 0.02	0.18
		G 2,2,10	8 104	3780	0.8	208	7777	3.33	0 0.02	0.28
	Grid	G 2,3,10	12 156	9072 0.81	312 18469	6.01	29 0.02	1.98
		G 2,4,10	16 208 16854 0.83	416 34141	11.23	55 0.02	5.87
		G 2,5,10	20 260 27207 0.85	520 54955	16.06	138 0.02 13.59

Table 2 :

 2 Dimensions of the instances and results for the virtual benchmark with flight-level changes

				Graph G		MILP		Solution
	Instance type Case	|F | |V |	|E |	d	m	n	z ip nodes	t l p	t ip
		R 4	4	60	936 0.69	120	1997	2.66	0 0.02	0.08
		R 8	8 120	4256 0.68	240	8761	5.34	67 0.02	0.7
	Roundabout	R 12	12 180	9864 0.66	360 20101	19.99	108 0.02	4.27
		R 16	16 240 17876 0.66	480 36249	42.73	96 0.02 16.63
		R 20	20 300 28016 0.66	600 56653	86.59	277 0.02	37.1
		F 1,60,10	2	30	156 0.69	60	375	1.32	0 0.02	0.02
		F 2,60,10	4	60	1068 0.79	120	2261	2.66	54 0.02	0.22
		F 3,60,10	6	90	2814 0.83	180	5815	4	0 0.02	0.23
		F 4,60,10	8 120	5406 0.86	240 11061	5.34	75 0.02	0.98
	Flow	F 5,60,10 F 6,60,10	10 150 12 180 13167 0.89 8859 0.87	300 18029 360 26707	6.68 9.96	0 0.02 74 0.02	1.19 2.4
		F 7,60,10	14 210 18334	0.9	420 37103	13.3	123 0.02	3.6
		F 8,60,10	16 240 24363	0.9	480 49223	18.66	103 0.02	7.2
		F 9,60,10	18 270 31261 0.91	540 63081	30.18	79 0.02	9.13
		F 10,60,10	20 300 39036 0.91	600 78693	41.61	92 0.02 11.51
		G 2,1,10	4	60	1115 0.83	120	2355	1.32	53 0.02	0.1
		G 2,2,10	8 120	5332 0.85	240 10913	3.33	0 0.02	0.42
	Grid	G 2,3,10	12 180 12744 0.86	360 25861	6.01	0 0.02	2.01
		G 2,4,10	16 240 23542 0.87	480 47581	11.23	185 0.02 10.05
		G 2,5,10	20 300 37807 0.87	600 76235	16.06	180 0.02 19.91

Table 3 :

 3 Dimensions of the instances and results for the single-level random benchmark with horizontal maneuvers

				Graph G		MILP		Solution
	Instance type Case	|F | |V |	|E |	d	m	n	z ip nodes	t l p	t ip
		U 5	5	55	726	1	110	1567	0.05	0 0.02	0
		U 10	10 110	4830 0.99	220	9890	0.23	0 0.02	0
		U 15	15 165	9865 0.99	330	20075	0.86	0 0.02	7.56
		U 20	20 220 14365 0.99	440	29190	1.54	8 0.02	11.1
		U 25	25 275 19182 0.98	550	38939	2.15	19 0.02	12.1
	Random	U 30 U 35	30 330 28750 0.99 35 385 31406 0.99	660 770	58190 63617	2.21 2.41	45 0.02 14.32 75 0.02 16.25
		U 40	40 440 52766 0.99	880 106452	3.21	119 0.02 19.63
		U 45	45 495 62051 0.99	990 125137	3.26	179 0.02 20.02
		U 50	50 550 57215	1	1100 115580	3.87	225 0.02 20.06
		U 55	55 605 69090 0.99	1210 139445	4.83	346 0.02 22.21
		U 60	60 660 75338 0.98	1320 152056	6.32	561 0.02 29.35

Table 4 :

 4 Dimensions of the instances and results for the single-level random benchmark with horizontal maneuvers and flight-level changes

				Graph G		MILP		Solution
	Instance type Case	|F | |V |	|E |	d	m	n	z ip nodes	t l p	t ip
		U 5	5	75	1209	1	150	2573	0.01	0 0.02	0.01
		U 10	10 150	4839	1	300	9988	0.01	0 0.02	7.07
		U 15	15 225	8939 0.98	450	18343	0.32	0 0.02 15.25
		U 20	20 300 16732 0.99	600	34084	0.97	0 0.02 18.55
		U 25	25 375 22345 0.98	750	45465	1.29	38 0.02 20.55
	Random	U 30 U 35	30 450 32248 0.99 35 525 42027 0.99	900 1050	65426 85139	1.37 1.76	31 0.02 21.46 0 0.02 25.22
		U 40	40 600 50386 0.99	1200 102012	2.04	0 0.02 29.15
		U 45	45 675 60764 0.99	1350 122923	3.18	41 0.02 34.02
		U 50	50 750 69035 0.99	1500 139620	3.12	0 0.02 37.47
		U 55	55 825 84344 0.99	1650 170393	4.55	89 0.02 40.16
		U 60	60 900 75126 0.99	1800 152112	6.24	26 0.02 55.25

Table 5 :

 5 Dimensions of instances and results

			Large discretization	Medium discretization	Small discretization	Iterative procedure
	Instance type	Case	z l ip	t l ip	z m ip	t m ip	z n ip	t n ip	zSMILO	tSMILO	CPLEX
											Calls
		R4	7.93	0.04	2.66	0.07	0.96	1.45	1.06	0.06	4
		R8	18.64	0.25	5.34	0.51	5.34	69.2	6.42	0.26	4
	Roundabout	R12	32.03	0.72	19.99	2.95	15.71	362.06	18.03	0.75	3
		R16	42.73	2.37	42.73	6.99	38.67	2414.48	42.73	2.41	3
		R20	132.65	10.59	86.59	11.63	76.56	1162.29	86.59	10.39	4
		F1,60,10	2.58	0.01	1.32	0.05	0.47	0.45	0.67	0.07	3
		F2,60,10	5.26	0.03	2.66	0.06	1.14	1.27	2.09	0.09	3
		F3,60,10	7.93	0.08	4	0.18	2	9.33	2.32	1.11	4
	Flow	F4,60,10 F5,60,10	10.61 13.29	0.17 0.43	5.34 6.68	0.57 0.9	3.09 4.43	48.51 157.62	4.53 5.22	2.19 2.54	4 4
		F6,60,10	18.64	0.82	9.96	1.96	6.35	681.09	7.39	5.82	3
		F7,60,10	24	0.9	13.3	1.44	9.35	2431.05	10.45	5.95	4
		F8,60,10	29.35	1.17	18.66	1.7	14.67	3600.25	15.01	6.82	4
		F9,60,10	36.05	2.77	30.18	1.79	21.23	3675.12	24.11	7.43	5
		F10,60,10	47.22	3.33	41.61	1.85	37.17	3700.34	39.51	8.82	5
		G2,1,10	5.26	0.04	1.32	0.18	0.69	1.95	1.32	0.55	3
		G2,2,10	10.61	0.18	3.33	0.28	1.39	14.93	1.44	0.66	4
	Grid	G2,3,10	15.97	0.64	6.01	1.98	2.41	62.33	3.41	6.96	6
		G2,4,10	25.17	2.77	11.23	5.87	3.61	317.8	8.14	13.21	3
		G2,5,10	37.3	4.5	16.06	13.59	5.48	1845.36	9.51	17.72	5
		U15	1.37	8.12	0.54	9.1	0.34	118.45	0.46	21.34	3
	Random	U30 U45	3.34 5.12	10.03 14.32	2.21 3.26	12.32 19.02	1.02 2.97	500.12 1002.87	2.11 3.07	24.26 32.6	4 6
		U60	8.45	17.01	6.32	23.35	5.98	1237.12	6.11	37.18	3

Table 6 :

 6 Dimensions of instances and results for the second decomposition method on the multi-level random benchmark

		Size					Solution		
	Case	|F | |L|	z ip nodes	t ip CPLEX	z	f best	t	f best
							Calls		
	M 100,10	100	10	6.27	0 3.01	20	5.16 2692.44
	M 100,12	100	12	4.96	0 1.49	24	4.96 2310.54
	M 100,14	100	14	4.93	0 0.54	28	4.93 2066.45
	M 100,16	100	16	3.92	0 0.95	32	3.92 1975.94
	M 100,18	100	18	3.33	0 0.61	36	3.33 1964.45
	M 100,20	100	20	2.98	0 0.39	40	2.98 1712.24
	M 150,10	150	10	18.15	0 2.85	20	23.05	3600
	M 150,12	150	12	12.45	0 2.47	24	19.05	3600
	M 150,14	150	14	9.67	0 1.16	28	17.03	3600
	M 150,16	150	16	9.03	0 1.71	32	16.15	3600
	M 150,18	150	18	7.05	0	0.9	36	12.48	3600
	M 150,20	150	20	2.68	32 0.62	40	6.12	3600
	M 200,10	200	10	13.4	35 5.63	20	45.2	3600
	M 200,12	200	12	12.71	0 4.03	24	31.02	3600
	M 200,14	200	14	11.97	25 4.42	28	29.45	3600
	M 200,16	200	16	12.04	0	3.5	32	22.08	3600
	M 200,18	200	18	8.15	0 1.85	36	18.45	3600
	M 200,20	200	20	5.36	0	3.3	40	12.45	3600
	M 250,10	250	10	30.24	234 8.12	20 101.35	3600
	M 250,12	250	12	24.15	42	8.1	24	80.15	3600
	M 250,14	250	14	21.45	0 5.12	28	78.11	3600
	M 250,16	250	16	18.04	0	4	32	64.15	3600
	M 250,18	250	18	16.41	0 4.26	36	24.48	3600
	M 250,20	250	20	11.05	0 3.81	40	21.35	3600
	global solution.								

Positive angles correspond to counterclockwise rotations.

Acknowledgement

This work was carried out under the project OPR-601 funded by the CRIAQ (Consortium on Research and Innovation in Aerospace in Quebec).